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1 Planar graphs

The graphs are usually drawn with points for vertices and lines that link them for edges. Usually it is
not a problem to have crossing when you draw a graph. But now, we are interested in graphs that can
be drawn without crossings. These graphs are called planar graphs.

Trees is an example of a family of planar graphs. Another example can be seen on Figure 1. At first,
you can think that the graph on the left is not planar, however you can ”pull” one diagonal out, so that
there is no more crossing. Hence the complete graph on four vertices K4 is planar.

There is a common property though, that all connected planar graphs share.

Problem 1 If you note v for number of the vertices, e for the number of edges and f for the number of
faces, then the following formula is satisfied:

Euler’s formula: v − e + f = 2

Solution. We will prove the formula by induction on the number of edges e.
Base: e = 0. The only connected graph with no edges is a vertex. v − e + f = 1 + 1 = 2.
Induction: assume that the formula is true for all graphs containing e edges. Take G with e+ 1 edges.
If G is a tree, then the tree contains e + 2 vertices, hence the formula is true.
If G is not a tree, it contains a cycle. Take an edge e′ on a cycle of G. Removing this edge will:

• Result in a graph on e edges, for which the induction hypothesis applies. Say that the number of
vertices and faces in G− e′ is v and f respectively.

• Decrease the number of faces by 1, which means that the number of faces in G is f + 1.

Taking this into consideration, the identity v − (e + 1) + (f + 1) = 2 is still valid for G, proving thus the
induction.

Euler’s formula is the milestone for studying the planar graphs. Let’s try to find more about the
relations between the number of vertices, edges and faces:

Figure 1: Drawings can be deceiving: K4 is actually planar.
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Figure 2: Graphs K5 and K3,3 are not planar.

Problem 2 Prove that if v ≥ 3, then 3v − e ≥ 6.

Solution. This proof uses a very important technique in combinatorics: the double counting.
We are interested in incidences, the couples edge×face that are adjacent one to another. Let’s note

the set of incidences as I.
Every edge has at most to faces that are adjacent to it, so:

#I =
∑
e′edge

#{f ′ face | f ′ is adjacent to e′} ≤ 2e

On the other hand, every face borders at least 3 edges, so:

#I =
∑

f ′edge

#{e′ face | e′ is adjacent to f ′} ≥ 3f

This yields: 3f ≤ 2e.
Use Euler’s formula: 6 ≤ 3v − 3e + 3f ≤ 3v − 3e + 2e = 3v − e.
Such inequalities enable us to prove that a certain graph is non-planar. Here are several examples:

Problem 3 Prove that K5 and K3,3 are not planar (see Figure 2).

Solution.

1. K5 has 5 vertices and 10 edges, and 3v − e = 5 < 6, which contradicts the previous exercise.

2. The strategy for non-planarity of K3,3 is similar, however we should notice first, that in K3,3 there
are no triangles.

Suppose that K3,3 is planar. Then its faces would border at least 4 edges. Using the same double
counting argument, we end up with 2f ≤ e, so 2v − e ≥ 4. However, K3,3 contains 6 vertices and 9
edges, therefore 2v − e = 3 < 4, which is a contradiction.

There exists a full characterisation of planar graphs. But to understand it, we will need a definition:

Definition 1 (Subdivision) A graph G′ is called a subdivision of G, if it is obtained from G by the
following operations:

1. Removing a vertex.

2. Removing an edge.

3. Contracting an edge: meaning that its two extremities are combined into one vertex, adjacent to all
the neighbors of those two extremities.

Now, we are ready for the characterisation theorem.
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Theorem 1 (Kuratowski’s theorem) A graph is planar if and only if neither K5 nor K3,3 are its
subdivisions.

Problem 4 Prove the direction: if a graph is planar, then neither K5 nor K3,3 are its subdivisions.

Solution. We already know that K5 and K3,3 are not planar. On the other hand, the operations in the
subdivision definition preserve planarity. Therefore, if a graph is planar, then neither K5 nor K3,3 can be
obtained via these operations.

The other direction of the theorem is hard and will not be seen in the course.

Example 1 (Petersen graph) The graph is not planar.

2 Colorability

To color a graph, associate to every vertex a color in such a way that the two extremities of an edge are
of different colors.

If the number of used colors is not limited, it is always possible to color each vertex with its own color.
So the interesting problem is to color graphs with at most k colors.

Problem 5 2-colorable graphs are the graphs that don’t contain odd cycles.

Solution. Let G be a graph with an odd cycle. Suppose by absurd that it is 2-colorable. When coloring
this cycle, we have no choice but to color the vertices one by one changing the two colors. Because the
cycle is odd, there will be necessarily two neighbors of the same color. Contradiction.

Now, assume that G does not contain odd cycles. Take a vertex v′ in G and divide all vertices in G
into two sets V0 and V1:

V0 = {all vertices of even distance from v′}
V1 = {all vertices of odd distance from v′}

Neither vertex in V0 is connected to any other vertex in V0, because it would generate an odd cycle. For
the same reason, vertices in V1 are not connected between themselves either. Hence, you can color V0 into
one color and V1 into another color.

Planar graphs have interesting properties regarding coloration.

Problem 6 1. All planar graphs are 6-colorable.

2. All planar graphs are 5-colorable.

To prove these questions, we will need the following lemma:

Lemma 1 The average vertex degree in connected planar graphs is < 6.

Solution. We will use the double counting technique, but using (vertex,edge) incidency pairs this time.
The number of such incidences is #I = 2e.
However,

#I =
∑

v′ vertex

{e′ edge | e′ is adjacent to v′} =
∑

v′ vertex

deg(v′)

So, the average degree is D = #I
v = 2e

v .

By the exercise proven before, if v ≥ 3 then D = 2e
v ≤

2(3v−6)
v < 6.

Otherwise, it is easy to verify that for all connected planar graphs with v < 3, the average degree is
less than 6.

Now, we are ready to prove the colorability of planar graphs!
Solution.
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Figure 3: 4-coloration of the map of Europe.

1. Let’s prove by induction on vertices.

Base: If there is one vertex, choose any of 6 colors for it.

Induction: Assume that all planar graphs G on k vertices are 6-colorable. Take a graph G with
k + 1 vertices.

By previous exercise, the average degree is < 6, so there is at least one vertex of degree ≤ 5.
Remove one such vertex v′ from G: the resulting graph contains k vertices, hence it is 6-colorable
by induction hypothesis. As there are at most 5 neighbors of v′, there will always be a color for v′

so that it is different from all its neighbors. Hence, G is 6-colorable.

2. We prove the 5-colorability in a similar way as the 6-colorability. Let v′ be a vertex of degree ≤ 5. If
the degree is ≤ 4, color the rest of the graph by induction hypothesis in 5 colors and give v′ the color
not used on the neighbors. So we will assume for the rest of the proof that v′ has 5 colors. Color the
graph G−v′ in 5 colors and let 1,2,3,4,5 be the colors of the neighbors v1, v2, v3, v4, v5 of v′ counting
clockwise. Look at the subgraph (with edges) of G− v′ colored in 1 and 3. If the two neighbors of
v′ are not connected by a path in this graph, take the connected component corresponding to v3
and reverse the colors 1 and 3. After that you can color v′ in 3.

Now, we will assume that v1 and v3 are connected by a 1, 3-colored path in G−v′. Take the subgraph
of G− v′ colored in 2,4. By the same argument if v2 and v4 are not connected, then you can inverse
the colors of one subgraph and color v′ consequently. Otherwise, there is a connected 1, 3-colored
path from v1 to v3, and another 2, 4-colored path from v2 to v4, which contradicts planarity.

So G is 5-colorable.

As it turns out, the problem of coloration of planar graphs doesn’t end here. In 1976, it was proven
(with the help of a computer) that every planar graph can be colored in 4 colors. An example of 4-
coloration of European countries can be seen in Figure 3.
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