
Cue-Pin-Select, a Secure Mental Password Manager
Nikola K. Blanchard, Leila Gabasova, Ted Selker

ABSTRACT
People struggle to invent safe passwords for many of their typical
online activities, leading to a variety of security problems when
they use overly simple passwords or reuse them multiple times
with minor modifications. Having different passwords for each
service generally requires password managers or memorable (but
weak) passwords, introducing other vulnerabilities [? ?]. Recent
research [? ?] has offered multiple alternatives but those require
either rote memorisation [?] or computation on a physical device [?
?]. This paper describes a secure and usable solution to this problem
that requires no assistance from any physical device.

We present the Cue-Pin-Select password family scheme that
requires little memorisation and allows users to create and retrieve
passwords easily. It uses our natural cognitive abilities to be durable,
adaptable to different password requirements, and resistant to at-
tacks, including ones involving plain-text knowledge of some pass-
words from the family. We include a theoretical analysis of its
security according to multiple attack models. Finally, we show the
promising results of a small-scale user study that put participants
in real-life conditions for multiple days.

CCS CONCEPTS
• Security and privacy → Authentication; Usability in secu-
rity and privacy; Social aspects of security and privacy; Software
security engineering; •Human-centered computing→User cen-
tered design.

KEYWORDS
Usable-security; Password schemes; Authentication;

ACM Reference Format:
Nikola K. Blanchard, Leila Gabasova, Ted Selker. 2019. Cue-Pin-Select, a
Secure Mental Password Manager. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, ?? pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
As has been observed repeatedly [? ? ?], the number of passwords
is ever-increasing, and having different passwords for each service
generally requires password managers or memorable (but weak)
passwords, introducing other vulnerabilities [? ? ?]. This is often the
result of an unconscious trade-off between security and usability,
sometimes leading to cognitive dissonance [?]: although users
know they are vulnerable, they do not take actions to remedy
this [? ?]. A wide variety of factors affect this choice, among which

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

mainly stand effort, lack of information about alternatives and lack
of perceived usefulness [?]. Inadequate mental models of security
also play a role [? ? ? ?].

This isn’t only the users’ fault: well-meaning but counter-productive
constraints (such as mixed-case, numbers and symbols) have been
mostly detrimental [? ? ?]. They not only pushed users to have
weak passwords — focusing their efforts on satisfying or bypass-
ing the constraints instead of making good passwords — but also
forced them to create passwords in an ad-hoc way, preventing them
from following habits which improve memorisation. Those new
passwords become not only weak but forgettable, and lead to fre-
quent resets of the rarely used passwords. The traditional solutions
for users have been to write down their passwords [?], use the
same few passwords for everything [?], or use password managers,
constituting a single point of failure from which an adversary can
completely steal an identity [?]. Alternatives are being developed
but biometric authentication is still suffering from serious flaws [?
? ?], and so do password managers as they increase reliance on
either specific — and potentially unreliable — web services [?], or
on one’s own devices which can stop working or get stolen.

A different potential solution is to create a set of non-independent
passwords, related by a common pattern. As humans are natural
pattern seekers, many intuitive ways have been devised to avoid
password re-use without incurring too high amental cost [?]. Those
schemes which create new passwords automatically can be arbi-
trarily simple or complex, going from very small variations at the
end of a word to word association schemes [? ?]. They alas tend to
have security barely above password re-use, as users may produce
families of related passwords which an adversary can easily infer if
they learn some examples (such as Mypassword1! Mypassword2...).
Finding a good method to remember large sets of passwords at little
cost to the user would then be a boon.

Previous work. There have been a few recent attempts at pass-
word managers that are not device-reliant, but they generally re-
quire a large amount of rote memorisation [? ?] or computation
on a physical device [? ?]. Efforts have mostly been led by Manuel
Blum and his co-authors N. Hopper, J. Blocki, A. Datta and S. Vem-
pala, with six papers on the subject, including five in the past five
years [? ? ? ? ?]. In them, they have framed, formalised and brought
forward many important issues in mental passwords managers and
password schemes, on both the security and usability fronts. They
mention five criteria that schemes should satisfy:

• Analysable, meaning that the schema should be awell-defined
and deterministic algorithm.
• Publishable, corresponding to Kerckhoffs’s law.
• Secure, typically resisting both online and offline attacks
from an adversary with superior computing power.
• Self-rehearsing, such that the process of using the scheme
regularly enough is sufficient to remember it.
• Humanly usable, such that an average human can learn and
use the system at no great cost.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard, Leila Gabasova, Ted Selker

They have also proposed a series of algorithms, generally based
on challenge systems, where the authenticating system sends some
information to the user, to which they must respond accordingly.
The challenges are combined with computational primitives that
the users are supposed to execute. For example, their DS1 protocol
requires a user to memorise a random letter-to-digit map as the
seed to their password creation, while WS1 asks users to memorise
both letters and words about a topic [?]. They also describe LP1
that requires users to memorise a random letter permutation. These
different kinds of memory tasks are all valid, but memorising ran-
dom mappings is difficult, and may take time and a large amount
of effort.

One of the most interesting systems they created, for which
they prove strong security bounds, requires the user to remember
a mapping between digits and a set of 14 images [?]. Once they
have the mapping, the challenge system shows the images on the
screen in a random order, and the user has to compute

x13 + x12 + x(x10+x11 mod 10) mod 10

where xi is the number corresponding to the i-th image in the list
shown to the user. Although this is complex enough, authenticating
using this kind of system requires at least 3-5 different challenges.
The original paper mentions that the main author managed — with
some training and solid natural mathematical abilities — to reliably
compute the function for a single challenge in 7.5 seconds. Most
users would then probably take at least 40 seconds for the complete
authentication procedure.

In spite of their excellent work and prescient points about what
would be usable password creation and retrieval, people today
still don’t know which method to use. We are still left with no
good example algorithm for easily making secure families of pass-
words, and the main usable methods are still vulnerable to typical
attacks. Moreover, it seems that the criteria they created might not
be enough.

Contributions. This paper introduces three new criteria and pro-
poses and characterises a specific usable scheme (though certainly
not the only one possible) that allows the easy creation, memory,
usage, and retrieval of a password, while remaining secure against
a large variety of attacks. The criteria are as follows:
• Agent-independence, meaning that the user should not re-
quire any outside help, be it from their own computing de-
vices, an untrusted calculator or phone, or even pen and
paper.
• Scalability, an extension of their publishability criterion,
with two constraints: the security of the scheme should not
strongly diminish with either increased popularity or in-
creased use by a single user with many different passwords.
• Adaptability, the final and most important criterion, permit-
ting the user to always be able to use the system no matter
the idiosyncratic constraints they face.

This last criterion is crucial as otherwise the user is faced with
two possibilities: creating a new password in an ad-hoc way, which
might be insecure and which they will probably forget, or change
the algorithm used at some point. Moreover, remembering many
algorithms, their associated secret information and where they
were used seems even harder than remembering many passwords.

The system we propose, called Cue-Pin-Select, is a password
generation scheme for 12+ characters that is provably strong and
adaptable to the requirements of today’s systems. Designed to profit
from our natural linguistic abilities, it performs well on constraints
of usable memory and learning, while fulfilling strong security
constraints. The system relies on selecting a cue from or for a
service onto which the user might log (such as part of its name),
and applying a PIN to create an index into a common six word
phrase. The intent behind its creation was to show a system that
cannot be reasonably hacked even if the adversary knows some of
the plain-texts, while also making it human computable without
command-line tools or too much work. We can learn six words
and a PIN much more easily than the random mappings proposed
and they are directly usable without any specific knowledge or
ability. A preliminary user study showed how all alpha-testers with
only a few minutes of training were able to produce a new secure
retrievable password in well under a minute and improved their
times consistently in 19 trials over 4 days.

In general considerations on password schemes, we will suppose
that each scheme is composed of three kinds of information:
• Some user-only information which can include the initial
seed for random data, or any piece of information that should
absolutely not be spread. If an adversary obtains it, this
information can potentially allow them to recreate all the
user’s passwords.
• The passwords themselves, from which it should be difficult
to find the user-only information.
• An environmental cue, a piece of information (in our case
four characters), or the scheme used, from which a user can
(re)create a password if they have the user-only informa-
tion. Those can be guessable and should offer little direct
information on the rest by themselves.

The rest of the paper follows the following structure. We start by
explaining the proposed scheme and analyse its resistance to the
main types of attacks. We then look at it from a usability standpoint
and show the promising results of a small-scale user study that put
participants in real-life conditions for multiple days. Finally, we
introduce multiple variants and explain the design choices leading
to Cue-Pin-Select

2 THE CUE-PIN-SELECT SCHEME
Cue-Pin-Select uses four different pieces of information. A user
starts with one long high-entropy passphrase that is highly mem-
orable despite its length, and a 4-digit PIN. The process uses an
algorithm that is easy to remember and implement, and finally, for
each service where a user needs a password, they need to choose a
small four-letter string called the cue.

2.1 Passphrase
The main secret data has two components. The first is a passphrase
of at least 6 English words1, and the second is a 4-digit PIN of the
kind that people are accustomed to associating with bank cards.
To generate the passphrase, the user is supplied with a random
sequence of 6 words, to which they can add connecting words.
1The choice of English was for the entropy analyses and the user study, but the scheme
is adaptable to any language that is written in an alphabetic system.

Cue-Pin-Select, a Secure Mental Password Manager Conference’17, July 2017, Washington, DC, USA

In the usability test, participants were encouraged to use an
online random word generator, but more sophisticated methods
could also be used to create a long and memorable passphrase.
We use the methods shown in in [?] for our security analyses,
considering words taken at random from a dictionary of the 87 691
most frequent correct English words, using Peter Norvig’s list of
most frequent ngrams [?]. The 4-digit number is also randomly
generated.

2.2 Password generation algorithm
Each time the user needs a password for a new service, they need
only apply the Cue-Pin-Select algorithm.

The algorithm makes a 12-character password in 12 steps. Let’s
suppose a user has created the passphrase parallel major domain
disastrous divergent waterways and that their PIN is 6908. Say they
are making the password for their Amazon account. They start by
coming up with a ’cue’: a 4-character string corresponding to this
service, say amzn. This cue will then be used to extract password
parts from the passphrase.

Data: Passphrase PHRASE of at least 6 random words
PIN of 4 random digits
service name NAME

Result: String S of 12 characters
1 begin
2 From NAME, create string CUE of four characters

/* User-chosen, which should be easy to

remember */

3 LEN ←− Length(PHRASE)

4 INDEX ←− 0
5 S ←− []

6 for i = 0 ; i < 4 ; i + + do
7 LETTER ←− CUE[i]

8 while LETTER < PHRASE do
9 LETTER ←− letter following LETTER in the

alphabet
10 INDEX ←− index of next occurrence of

LETTER in PHRASE after INDEX

/* Or wrap around to the first occurrence

if the end of PHRASE is reached */

11 INDEX ←− (INDEX + PIN [i] + 3) mod LEN

12 S ←− Concatenate
(S, PHRASE[INDEX − 2, INDEX − 1, INDEX])

/* All the indices are modulo LEN */

13 Print S
Algorithm 1: Cue-Pin-Select

Figure ?? shows this process, where each operation has a colour,
creating the password majrouterusd, using Algorithm ??. Once
they have chosen (or remembered) their cue, they proceed as fol-
lows:

(1) They look for the first letter of their cue, a, in the passphrase.
In our example, this would be the first a found in the word
parallel. They then step though the letters indicated by

Figure 1: Running the four phases of Cue-Pin-Select using
AMZN as a cue and parallel major domain disastrous diver-
gent waterways as a passphrase.

the first number of their PIN, in this case 6. This would be
the last l of parallel. They add the next three letters in
their passphrase to their password, maj.

(2) They look for the next letter, m from where they left off. This
leads them to the m of domain. They skip 9 letters, getting
to the t of disastrous, and add the next three letters, rou
to their password.

(3) They look for the next letter, z, but can’t find it. As the letter
in the cue isn’t in the passphrase, they look for the next letter
in the alphabet: z is then replaced by a, and they continue
where they left off. The next a is the first one in waterways,
and as the third number in their PIN is 0, they take the next
three letters, ter.

(4) For the last step, they have to look for an n, but reach the
end of the sentence, they then continue from the start, get
the n of domain, skip 8 letters and end up with usd.

(5) They are then left with their password: majrouterusd.

2.3 Finding forgotten passwords
As the procedure is deterministic — for a given passphrase — the
only variability comes from the cue. In case they forget their original
cue, the user should be able to find it within a few tries, from which
they can derive the whole password. However, there is another
simpler option: the cue and the PIN could hypothetically both be
written down by the user, as the security analyses don’t assume
that they are secret. This way, only the passphrase stays secret, and
it is the most frequently rehearsed bit.

The analyses in the coming section pertain to the model shown
here. Variants to the algorithm can be introduced for making new
passwords or responding to various password requirements. Some
representative variants will be studied after the analysis below.

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard, Leila Gabasova, Ted Selker

3 SECURITY ANALYSIS
As a combinatorial analysis of all combinations of words from
the dictionary with the algorithm would be intractable and highly
dependent on specific properties of our dataset, analyses here rely
on Monte-Carlo models. The entropies are computed exactly from
the k-grams index, the list of k letter sequences present in sentences
made from the dictionary.

3.1 Preliminary considerations
One of the main assumptions used in the following analyses is that
the distribution of three-letter trigrams composing each password
is very close to the distribution of a random trigram taken in a
random passphrase. The PIN is an essential part of the randomisa-
tion mechanism. It is important because simply reading a sequence
of characters in words when reading the cue letter q without the
PIN step would give trigrams like qu where q is followed by u in
1248 out of 1266 cases, with only 2.7 bits of entropy. An o, however,
would give 10.4 bits as it reveals little information on the following
characters.

Distribution uniformity is nearly achieved as the number of char-
acters stepped over each time through the passphrase is random
enough that the probabilities of landing on any letter of a given
word are quasi-uniform. The simulation shown in Figure ?? presents
four curves2 representing the probability distribution for the num-
ber of letters stepped over (one for each letter in the 4-character cue).
Since it is much bigger in expectation than an average word length
of 9, the probabilities of landing on the n-th letter of a word are
then close enough to uniform along n to provide no real advantage
to an adversary.

The length of the passphrase itself follows a Bell-like distribution
(being a product of distributions that are themselves Bell-like). It
has 99% probability of being between 33 and 65 characters long,
centred around 48 and has a large variance. As a consequence, with
high probability, the second trigram comes later than the first in
the passphrase. However, thanks to the large variance in the proba-
bility function, the probabilities of the second trigram preceding
or following the third trigram are not too far apart, and the same
can be said for all the other pairs. Figure ?? shows the logscale
distribution of passphrase lengths (exact computation based on our
dictionary).

3.2 Scalability
3.2.1 Publishability. The scalability of a scheme corresponds to
two different notions. First, it should be scalable in number of users.
Any person who uses an obscure but adequately complex scheme
will be protected by a lack of specialised attacks targeting it. This
is not true for a scheme used by millions of people. As such, all the
threat models should assume Kerckhoffs’s principle that only the
key (cue, PIN, and service code) are private, the algorithm being pub-
lic. This corresponds to [?]’s notion of publishable. In our situation,
there could actually be a small positive impact of large-scale imple-
mentation, in that people using it in a variety of languages reduces

2The shape of those curves might seem to follow Zipf’s law [?], with the number of
letters covered being inversely proportional to the letter’s rank frequency — to which
an offset has been added because of the random PIN. However, in such a case the
maximum would be reached with fewer than 10 letters stepped over.

0 10 20 30 40 50 60 70
Number of letters covered by one step of Cue+Pin

0

50

100

150

200

250

Nu
m
be
r o

f c
as
es
 o
ut
 o
f 5

00
0

First letter of the cue
Second letter of the cue
Third letter of the cue
Fourth letter of the cue

Figure 2: Distribution of the number of characters covered
in one step of Cue+Pin, obtained by simulation on 5 000
(passphrase/cue) pairs, for passphrases of average length 48.

0 20 40 60 80
Passphrase length

10−17.5

10−15.0

10−12.5

10−10.0

10−7.5

10−5.0

10−2.5

100.0

Fr
eq

ue
nc

y
1 word
2 words

3 words
4 words

5 words
6 words

Figure 3: Distribution (in vertical logscale) of passphrase
length for passphrases made up of k words. The recom-
mended passphrase length of 6 words corresponds to a peak
around length 48. Most of the passphrases generated this
way are secure against multiple-plaintext attacks, although
the few that are under 35 characters are more vulnerable
than the others.

the possibility of statistical and dictionary attacks, marginally in-
creasing the general level of security (as opposed to only American
English users).

3.2.2 Creating many passwords. The second type of scalability
corresponds to the number of passwords used by a single user;
frequently using a scheme should not make it more vulnerable (be-
sides the higher risk of multiple plain-text attacks). For a given at-
tacker with specific computing resources, knowing some plain-text

Cue-Pin-Select, a Secure Mental Password Manager Conference’17, July 2017, Washington, DC, USA

passwords, and other information, the probability of uncovering
passwords should onlymarginally increase with the number of pass-
words created by the user through the scheme. A simple unscalable
example would be a system that solely depends on a passphrase
composed of four sections, where the user randomly selects two
sections each time they need a password. If they use this scheme
less than 3 times, assuming each section has sufficient entropy,
passwords don’t reveal each other. After 7 uses, however, some of
the passwords will be repeated. On the other hand, while having a
completely new password for each new service is infinitely scalable,
as described above, it will require some way of remembering the
passwords, which introduces vulnerability.

For Cue-Pin-Select, it is enough to show that all the passwords
generated will be different from each other. It’s clear that it should
be the case in general, when the user has different cues (in particu-
lar, ones that don’t have the same first three letters). However, a
simulation where each passphrase generates 20 passwords demon-
strated that the average distance between two passwords is close
to what would be expected from two random strings (at most a few
letters being shared). The edit distance between the two closest
passwords generated was also calculated (corresponding to the risk
of having one other password stolen when the worst password
is stolen). This showed that even in this worst situation, in more
than 99% of cases an adversary would have to change at least three
letters (a quarter of the password, although they don’t know which
one, corresponding to 15 bits of security3), assuming they already
possess one of the two closest passwords.

3.3 Brute-force and dictionary attacks
3.3.1 Attacking the password. Current entropy recommendations
against brute-force attacks vary from 29 bits to 128 bits of security,
depending on the attack model [?]. One common recommendation
proposes 36 bits of security on any given password for web services;
such a password would require 1 000 tries per second for one year
to break. Assuming the attacker uses online servers to distribute the
attack, in 2018 this would require more than $1000 per password,
even with strong economies of scale [?].

In our case, assuming the adversary knows the scheme used, a
smarter attack would be to guess which trigram is used in each
position. However, an analysis of the distribution of trigrams in the
dictionary shows that each trigram adds around 13 bits of entropy.
To get this number, we computed explicit probabilities for each
potential trigram in English using the SOWPODS dictionary — not
only within words but also trigrams crossing over words. We also
assumed one additional hypothesis: that the start of the trigram
in the word is uniformly distributed. This is not entirely accurate,
as it depends on the letter chosen in the Cue phase, but the Pin
phase adds enough uncertainty to make it quite uniform. Explicit
computation on trigrams gave the amount of entropy per trigram
— within our dictionary — depending on the type of trigram, which
can be either within a word or across two words. Computing them
showed that the entropy is highest for trigrams composed of the
last letter of a word and the first two letters of the next, with 13.95

3Although 15 bits of security might seem low, it stills corresponds to more than 10 000
login attempts, assuming that the adversary is lucky and already knows the closest
password and not just a random password.

bits. The lowest was for trigrams composed of the last two letters
of a word and the first of the next, with 11.42 bits, and trigrams
within single words had 13.17 bits of entropy. As the latter are by
far the most frequent type of trigrams, it is reasonable to assume
that each password has around 52 bits of entropy. This is close to
the optimal performance of uniform alphabetic passwords of length
12, which have 56.41 bits of entropy.

3.3.2 Attacking the passphrase. The passphrase is much more valu-
able than any of the passwords; however, it also has much higher
security. Indeed, the six mandatory words are uniformly distributed
among a dictionary of 87 691, leading to a raw entropy above 98 bits.
Adding the PIN gives 111 bits of entropy, way more than any user
could reasonably use, even against distributed attacks. Two factors
reduce this value: the user chooses the order of the passphrase,
which can reduce entropy by 3-7 bits depending on the model, and
they can also redraw random words a few times if they don’t like
the first ones (removing one or two bits). This small cost is par-
tially compensated by the fact that they can use auxiliary words.
Overall, assuming the worst case and finicky users, the passphrase
and PIN should still give at least 102 bits of entropy. Against dumb
brute-force attacks, it would have more than 210 bits of entropy,
confirming the problem with using raw entropy without specifying
the adversarial model.

3.3.3 Resistance to plain-text attacks. Plain-text attacks are one
of the main vulnerabilities found in most user behaviours today,
generally stemming from password reuse. This is also where typical
methods as described by LifeHacker fail [?]. Assume that, with
the drop in computing costs, the adversary tries not just the exact
password they have access to but also simple variants of it. The
remaining entropy should stay high, even assuming that the adver-
sary knows both the method and at least one plain-text password [?
].

The scheme was designed to provide high security even in the
event that one (or even a few) of the passwords are compromised,
which can happen independently of the user’s best practices. As said
earlier, trying to guess one password from another in Cue-Pin-Select
is a hard problem in the general case, as the edit distance is great
(only marginally lower than the edit distance between the password
and a random string). The easiest way of attack then seems to go
through the derivation of the passphrase from a password obtained
by the attacker.

Plain-text attacks. To analyse the security of the passphrase from
plain-text attacks, suppose that the adversary knows not only the
plain-text but also the length of the passphrase and the position
of the plain-text inside the passphrase. This gives way more infor-
mation to the adversary than is realistic, due to the variation in
passphrase length discussed above. Even in such a case, we can
show that it is hard to find the passphrase from a single password.

104 random (passphrase/cue) couples were computed to get in
each case a passphrase where only certain characters were revealed.
Dynamic programming was then used to compute the number of
passphrases that used exactly 6 words, compatible with the revealed
letters and had the right length. This gave the number of potential

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard, Leila Gabasova, Ted Selker

combinations in each case, which is shown in logscale (hence cor-
responding to the number of bits of entropy) in the top curve of
Figure ??.

This shows that Cue-Pin-Select can guarantee a minimum of 40
bits of entropy in case of a plain-text attack, with an average of 54
bits (the standard deviation is 6 bits), and a maximum of 79 bits.

The curves for the remaining entropy, when the lucky adversary
has access not only to the length and positions of revealed letters,
but also to either two or three passwords, are shown on the bottom
curve of Figure ?? (5 × 103 runs each).

40 50 60 70 80
Bits of entropy

0

2

4

6

8

10

Fr
eq

ue
nc

y
(%

)

0 10 20 30 40 50 60
Bits of entropy

0

2

4

6

8

10

12

Fr
eq

ue
nc
y
(%

)

Two plain-texts Three plain-texts

Figure 4: Bits of entropy left on a passphrase when a plain-
text and the position of its letters are revealed. The top fig-
ure corresponds to a single plain-text, while the bottom one
features the curves for 2 and 3 plain-texts. Obtained by sim-
ulating 10 000 random (passphrase/cue) couples – for the
top figure — and 5 000 (passphrase/cue 1/cue 2/cue 3) tuples
for the bottom figure. The bits of entropy come from the ex-
act number of possibilities remaining using the passphrase
length and the revealed passwords (computed from the cues)
as constraints.

In those two curves, the average number of bits of entropy left
is respectively 32 and 20 bits. However, a large standard deviation
(around 9 bits in both cases) and a variability in passphrase length
means that in degenerate cases (which happened once in each
group of 5 000 simulations of the adversary having several revealed
passwords, the length and position of the revealed letters), a double
plain-text lead to only 7 bits of entropy, and a triple plain-text
completely revealed a passphrase. This is to be expected as this
would reveal up to 36 characters, and close to 2% of passphrases are
smaller than that. As some of the plain-texts can also give redundant
information, the maximal entropies left were 64 and 56 bits.

The guaranteed high level of entropy against at least two plain-
text attacks means that users should be secure if they maintain
good security hygiene and change their passphrase when they
think they have been compromised. Even adversaries with decent
computational means and knowledge of the system used should
have no real chance of cracking their passphrase.

3.3.4 Resistance to side-channel and other attacks. Schemes have
been proposed that are resistant to brute-force while requiring
little effort on the user’s part, but require some computation, or
storing of information on a trusted device. This can be as simple as a
persistent physical memory, corresponding to writing passwords in
a notebook, using a password manager on a potentially vulnerable
computer (e.g. to keyloggers), or, as in [? ?], requiring semi-secure
computation in the form of challenges from a computer. It can also
include hybrid methods such as the password card [? ?], in which
obtaining the card does not give complete access but reduces the
entropy of the owner’s passwords to about 10 bits each.

As Cue-Pin-Select can stay entirely in the user’s mind, it should
be entirely secure against side-channel attacks, as the only links
between the passwords are entirely immaterial. Those passwords
are the only information available no matter the adversary’s means,
so the security of the scheme corresponds exactly to the security
shown above.

This, however, ignores two possibilities. The first is that some-
one could know the user well enough that they could guess the
user’s choices. While other schemes that rely on mental association
are also potentially vulnerable to someone who knows the user
extremely well (even more so if they also have access to computa-
tional power to get through the last bits of entropy), Cue-Pin-Select
does not. This is why the words of the passphrase should be gener-
ated randomly, in a way that doesn’t depend on the user’s typical
choices.

The second possibility is more down-to-earth: some users might
write down their passphrase to help them create their first few
passwords, or to create a new one. As long as they destroy this
physical (or digital, if written in a text editor) evidence, they still
have the same level of security, but it is a behaviour that should be
discouraged, especially as it is possible to perform the task mentally,
as shown in the usability test.

3.4 Remaining threats
One smart way of attacking this system relies on finding a big
intersection between two passwords. This mainly happens when
two cues are extremely similar — e.g. sharing the first three letters
— leading to very close passwords that can leave the adversary with

Cue-Pin-Select, a Secure Mental Password Manager Conference’17, July 2017, Washington, DC, USA

only three characters left to guess. This could push some hackers to
target the user data of services whose natural cues might be close
to the ones of valuable services.

There is, however, a simple way to lower the risk: telling users
to create their cue in a memorable way, while trying to avoid very
similar cues: if they need cues for "GoDaddy" and "GoAir", they
should choose gdad and gair for their cues, instead of goay and
goai. This is reasonable, and a quick simulation shows that, even
without changing a single letter, the median number of cues gener-
ated before a real collision is 79, quite above the number of accounts
most users have at any point [?].

The scheme is analysable, as it is deterministic. We have also
shown that the scheme is publishable and secure againstmost known
attacks. We must now look at its usability.

4 USABILITY
Regardless of how secure a password is, if it is too hard to make,
it will be reused. If it is too hard to remember, it might be stored
in a possibly insecure way, such as on paper or in a file. Usability
constraints of retrievability, low effort, and adaptability are all
critical to the success of a scheme.

4.1 Retrievability
One of the biggest sources of online frustration [?] is forgetting
a password and trying several plausible ones before abandoning
and resetting it — when possible. This can be compounded by the
fact that the next few proposed passwords might get discarded
as they correspond to past passwords, pushing the user to create
ever harder passwords, getting confused about which ones worked
and so on, and forgetting them even more frequently. Moreover,
frequent resets can pose security risks by themselves.

4.1.1 Passphrase. In the case of Cue-Pin-Select, the information
needed to retrieve the passwords is easily memorable or retrievable,
and generally both. The most important is the passphrase itself,
which should be easy to remember by being quite short [?] and
meaningful to the user. Three factors play a role in its memorability.
First, allowing users to create their own passphrase from six given
words by manipulating the order and having the opportunity to add
their own words makes it more personal, safer in its extra length
and still easier to remember, as in [?].

Second, more than 35% of users need a password for a new service
at least once per week, and more than 90% need at least a few per
year [?]. Repeated use of the scheme will serve as rehearsals and
cement the passphrase in their memory.

Third, if the user never uses their passphrase or the generated
passwords, it has low utility for them, and no scheme would truly
work in such a case. However, there is the possibility of a user never
creating new passwords after an initial period and memorising the
ones they have. In such a case, those passwords could serve as
strong information that would help their memory.

The passphrase becomes more memorable after the user has
started using it. It is also retrievable if they forget part of it after
a period of disuse. Together, the last two correspond to the self-
rehearsing constraint mentioned in [?].

PIN.. As can be seen from the global use of 4-digit numbers for
credit cards, phone passwords, and door codes, people are used to
and capable of remembering this kind of PIN. Despite this, some
users could forget their PIN. In such a case, it would be easy to find it
back using only the passphrase and one of their passwords. Finally,
if some users struggle with numbers and might risk forgetting both
the PIN and their passwords, we provide a variant that does not
require it (albeit at a small entropy cost).

Cue. As the cue is short and users are discouraged from having
a complex cue, it should be memorable. More importantly, it is
retrievable as there are only a few imaginable cues each user could
create from a given service, so a few tries would be enough to get
the cue back. Also, it is possible to write down the list of cues in a
file, as the security analyses don’t assume that they are secret. This
is especially true for the variant where the user has to change their
password frequently.

Password. The password is the least memorable piece of informa-
tion, being composed of 12 pseudo-random alphabetic characters.
However, any secure password of such length will also be hard to
remember, unless it shares strong similarities with other passwords
(thus making it vulnerable). Despite this, thanks to the fact that
it is created from parts of words and through associative memory
and repetition, users should be able to remember their most fre-
quently used passwords. Finally, the password is easily and entirely
retrievable from the other pieces of information in a quick and
deterministic fashion.

When a user forgets their password, which will happen, their
first step is to rerun Cue-Pin-Select to obtain their original password.
However, that might not work if they are starting from a wrong cue
or have forgotten about special constraints. In such a case, the user
just needs to look at the password constraints on the service they
are using to figure whether they had added any special characters
(which is a deterministic process). This means that if they know
the constraints and their passphrase, the only unknown left is the
cue, so at most a few tries would be needed.

4.2 Low effort
Initialising the password scheme, creating or retrieving a password,
and entering it should all be tasks that are not difficult for users,
in both time and effort.. If they are hard, the user will resent it
or make mistakes as they have other goals for using services than
simply securing them. There are alsomany cases where it is strongly
advantageous to have no dependence on physical devices (such as
when one is in public, forgets their computer, or tries to give their
password on the phone). Hence, having a computer, or even a pen
and paper, should only marginally help the user and it should be
feasible to use the password scheme without those (see user study
below). This corresponds to the constraints of human usability and
agent independence.

The efforts needed for mental password managers can be split
into three categories, as long as we’re following the principle of
self-rehearsal:

• Time and difficulty to learn how to use the scheme and
initialise it (such as by creating a passphrase).

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard, Leila Gabasova, Ted Selker

• Difficulty to remember and enter passwords once it is used
in everyday life.
• Effort to get your password back when you lose it.

Generating the initial passphrase and PIN is easy, as one only
needs to get six random words and a random PIN from any genera-
tor (some being findable online), and organise them in the order of
their choice.

To create a new password, one starts by generating a cue which
is immediate as it should be the first 4-letter string that comes into
the user’s mind. The rest consists of counting and moving 4 groups
of 3 characters. It has only 3 steps between adding to the password
being typed — 12 steps total. It requires no mental arithmetics, so it
should be accessible to people with dyscalculia and should not even
require a piece of paper once the user is familiar with the system.

Passwords generated by Cue-Pin-Select should be easy to enter,
being composed entirely of alphabetical characters (and when ab-
solutely necessary the required one or two special characters), but
the user must first remember the password, and this is not a given.
We can distinguish three main cases:
• Frequently used passwords (entered at least every few days):
they tend to be remembered by the users even in case of rela-
tively high complexity. As this also applies to passwords cre-
ated using Cue-Pin-Select, frequently used passwords should
not suffer from increased effort or loss of performance.
• Rarely used passwords (entered at most a few times per year):
they tend to be forgotten by the users, leading to frustration,
many tries, and password resets. For Cue-Pin-Select, this
only leads to password regeneration, which requires recom-
puting it from a small remembered — or stored — cue and
is still lower effort compared to trying a few times before
resetting the account.
• Passwords used with medium or variable frequency: users
might forget them, and a simpler password could be more
memorable than one generated with Cue-Pin-Select. How-
ever, Cue-Pin-Select can be used to regenerate the password
without changing it, giving the user one more rehearsal
opportunity. On the other hand, with the usual password
schemes, having to reset it and pick a completely different
one wipes out the previous effort made to remember it, even
if it happens less frequently, making it costlier in the long
term.

4.3 Adaptability
It then seems that for most users and use-cases, systematic use
of Cue-Pin-Select should be easier. That, however, requires the
scheme to be always applicable, no matter the constraints imposed
by the service provider. It must then have no dependence on the
password character set, length, and reuse change policy that a
service imposes. Password requirement can also be contradictory
between different services (like short maximal length constraints
or forbidden numbers). Any exception that prevents the user from
using one scheme drastically diminishes the interest in using that
scheme. Among protocols that are now known to create usability
errors [?], some still ask users to regularly change their passwords,
avoiding any that have some similarity to ones used previously in
a large time frame. Some users also forget their password despite

their best efforts or make a typo while defining it for the first time.
Adaptable password scheme must then include the possibility of
creating new passwords for a single service without introducing
confusion as to which one is the current password, as users dislike
changing habits and will keep one scheme (or one password) for
multiple years at a time.

The passwords created by Cue-Pin-Select heretofore have been in
lower-case alphabetical characters. This provides enough security
by itself but could be changed as needed to work with idiosyncratic
password requirements. Even the most trivial extension that takes
care of this for each of the following requirements does not reduce
entropy:
• If the password requires capitalisation, the user should re-
member to capitalise one letter in their cue, and capitalise
the corresponding three letters of their password.
• If it requires a number, the user can start with 0 and insert it
at the center of their password, then increase it by one each
time they renew this password.
• If it requires a special character, they can pick one in partic-
ular, like "!" that they will put at the end (or in the center) of
every password that requires it.
• If it has a maximal length, they can just truncate the pass-
word without losing too much entropy (and a service that
limits passwords to lengths smaller than 12 probably has bad
security in any case).
• If it requires the user to change their password at set intervals
of time (such as everymonth), without repetition for a certain
time, they can change the first letter of the cue (or the first
two letters) by cycling slowly over the alphabet. AMZN
would become BMZN and then CMZN and so forth, and the
passwords would be strongly different each time (with high
probability), as it changes the starting point.

These simple changes give ways to adhere to the security con-
straints required by service providers without reducing the entropy
of the password or significantly reducing usability.

5 TESTING CUE-PIN-SELECT
With strong arguments in favour of the usability of Cue-Pin-Select,
a usability test was organised, with 11 subjects using it for short
tasks each day for four days. Their personal data was neither stored
nor shared. We told them not to use the passwords generated, but
encouraged them to take the benefit of learning this simplifying
system for later use with their own passphrase and passwords. The
group consisted of five men and six women of diverse backgrounds,
varying in ages from 18 to 65.

5.1 Protocol
Users were initially given a document explaining what they needed
to know, including how to use Cue-Pin-Select. The document ex-
plained that they could leave at any time, that they should not
use the passwords they would generate over the experiment as we
would ask for that information, but that they were free to use the
system with another passphrase after the experiment. They were
progressively given three sets of tasks, each lasting a few minutes.
They were then told to follow the self-administered tasks at the
rate of one in the morning and one in the afternoon, and send us

Cue-Pin-Select, a Secure Mental Password Manager Conference’17, July 2017, Washington, DC, USA

the results, as well as the time it took them to accomplish each task.
The list of tasks is as follows:
• Day 1, task 1: Create their passphrase and PIN (task 0). Create
two passwords with cues already provided. Create cues and
then passwords for two services (Hotmail and Yahoo). After
this task, theywere given feedback to explain potential errors
in making a password they might have done.
• Day 1, task 2: Create a password with a provided cue, and
then a (cue/password) couple for New York Times. Told to try
to remember their passphrase, as they would have to recall
it from memory from the second day onward.
• Day 2, task 1: Recall the passphrase, then create a password
with a cue provided and a (cue/password) couple for Twitter.
• Day 2, task 2: Create a (cue/password) couple for Snapchat,
and recall the one they did for New York Times.
• Day 3, task 1: Create 2 (cue/password) couples for Reddit and
AT&T.
• Day 3, task 2: From this step on, the participants were told
to apply the algorithm entirely in their head (writing down
only the letters of their passwords as they computed them).
Create 2 (cue/password) couples for The Guardian and HP.
• Day 4, task 1: Create 2 (cue/password) couples for Spotify
and Gmail.
• Day 4, task 2: Recall the couples they created for Snapchat,
AT&T and HP.

After the experiment, users were presented with questions ask-
ing them if they had trouble remembering their passphrases (instead
of asking them if they cheated), which tasks they had done with
pen and paper and which in their head (as it appeared that some
switched earlier than in the instructions), whether certain aspects
made them lose some time, and whether they would consider using
it in its current state.

5.2 Results
Only one participant had trouble remembering their passphrase on
the second day (they were missing one word) and had to be given
it back. Most of them developed mnemonic schemes to help them
remember (or increase their speed), such as splitting it into two sen-
tences or creating mental imagery. A few had trouble remembering
their cues.

Some users had trouble following the initial instructions (or
found them unclear) as they were not very well explained. The
most common mistake was restarting from the start of the word at
each new cue. Feedback was given after the first set of tasks and
first password to teach them to use Cue-Pin-Select correctly. By the
second set of tasks, all users could correctly execute the algorithm
(with only three recorded mistakes in that task and the following).

As is shown in Figure ?? —with detailed data in Table ?? — there
was a general speed-up over the course of the experiment. We can
see a speed-up within each set of tasks, and a slowdown between
sets, with a stronger slowdown on the afternoon of the third day,
as all users had to compute passwords mentally and couldn’t use
pen or paper or their electronic device anymore4. As we can see
from the end of the table, speeds were still increasing at the end

4Two users decided to do all tasks mentally from day 2 onward, and their data was
not counted in the tables for days 2 and 3, but they show the same learning behaviour

of the fourth day, but that’s when we had to stop the experiment.
The real time taken by users who regularly use this method can
then be inferred to be lower than the one attained at the end of the
experiment, although we do not know by what margin.

Figure 5: Time taken by participants to create a password
over the course of the experiments. The solid curve cor-
responds to the median time and the shaded area repre-
sents the time taken by people between the 25th and 75th
percentiles. The sudden increase at 3.2 corresponds to the
switch to mental-only tasks.

Task 1.1a 1.1b 1.1c 1.1d 1.2a 1.2b 2.1a 2.1b 2.2a 2.2b

Mean 89 82 72 63 70 59 50 49 54 45
Median 72 56 51 56 66 55 44 47 51 40

Max 233 211 222 108 132 113 87 68 70 61
Min 47 35 35 32 32 33 30 32 42 31

Task 3.1a 3.1b 3.2a 3.2b 4.1a 4.1b 4.2a 4.2b 4.2c

Average 51 42 105 86 81 74 67 58 57
Median 50 40 90 80 77 71 65 56 54

Max 74 53 220 131 130 117 106 86 71
Min 38 30 65 47 46 47 24 33 31

Table 1: Time taken by participants to create each password,
in seconds. The top table has the times from the first and sec-
ond days, and the bottom table has the third and fourth days.
As in Figure ??, the increase at 3.2 is caused by the added rule
that forbade participants from using pen and paper, having
to compute the passwords mentally instead.

Users saw the algorithm’s value, despite the lower case only,
no special characters demonstration. Four out of eight users who
gave feedback said they would use this system, at least for their
important passwords. Two were hesitant; one thought that Cue-
Pin-Select wasn’t adaptable enough (indeed, they were not shown
how to use capitalisation or special characters). Finally, one said
they wouldn’t use it as it didn’t fit their personal security needs.

as the others. Instead of writing down the passwords as they created it, some users
tried to create all of it before writing it down; this data is included in the tables.

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard, Leila Gabasova, Ted Selker

5.3 Feedback
Multiple participants observed that there was a strong cost in time
(and usability) when they had a letter that was absent from their
passphrase and had to go through their passphrase multiple times.
They said that if they ever used the scheme again, they would make
sure to have more vowels in their passphrases, as well as a higher
letter diversity (which is also good from a security standpoint).
Two of them also mentioned they would prefer a PIN with lower
numbers.

6 CONCLUSION
This paper has introduced the Cue-Pin-Select usable password
creation scheme and analysed its security and usability. It can be
learned and applied by a novice in less than two minutes and after
making a few passwords, all testers were able to create 12-character
retrievable passwords in under a minute in their head. Some partic-
ipants were able to create or retrieve passwords in less than half a
minute. The scheme is robust against many types of attacks, includ-
ing against an adversary in possession of some of the generated
passwords. All of the passwords in the scheme are easily retriev-
able assuming the participant remembers their passphrase. The
passphrase itself is easily memorable, frequently rehearsed, and
retrievable via associative memory if the participant remembers
some of the passwords. It allows a participant to create a cue that
works for them. Finally, it is compatible with text-based password
constraints and can be used durably without frustration or risk from
an evolving constraint environment. In summary, it satisfies [?]’s
five criteria of analysability, publishability, security, self-rehearsal
and human usability, as well as our criteria of agent independence,
adaptability, and scalability.

The analysis performed gives worst-case lower bounds on the
security of Cue-Pin-Select, by making strong assumptions on the
amount of information available to the adversary. Instead of having
clear-text passwords, analyses supposed that they knew the length
of the passphrase and the location of each letter, while a significant
chunk of the security of the scheme relies on their secrecy. De-
spite those assumptions, the system guarantees 40-bit security even
against single plain-text attacks. Those bounds could be increased
by a more thorough analysis of realistic attacks, to prove a higher
level of security against multiple plain-texts attacks.

This exercise had several goals. It shows the existence of an
easy-to-use password generation and retrieval system. It gains
security from not requiring a computer, from the entropy of a
memorable secret, and from its adaptability. It gains usability by
being personalised, based on language, and by rehearsing the only
things that have to be remembered. It gains robustness in the ease
it gives for retrieving any passwords a user does not remember, and
for giving the users simple rules to make up alternative passwords
for any service.

With a greater speed and no reliance on mathematical primitives,
the system is easier to use and more secure than earlier proposals [?
]. Ideally, we hope to see this working demonstration leading to
new families of more secure, usable password creation and retrieval
systems. For example, the strong security constraints could be
relaxed to get a more usable scheme with a slightly weaker but
still strong security features. A thorough analysis of more realistic

threat models against Cue-Pin-Select and derived schemes that rely
less on private information held by the adversary would help in
this endeavour. The Appendix after the references shows multiple
variants that could make such analyses easier.

REFERENCES
[] 2018. Amazon AWS S3 Cost Calculator. https://calculator.s3.amazonaws.com/

index.html Accessed: 2017-12-18.
[] Jemal Abawajy. 2014. User preference of cyber security awareness delivery meth-

ods. Behaviour & Information Technology 33, 3 (2014), 237–248. https://doi.org/10.
1080/0144929X.2012.708787 arXiv:https://doi.org/10.1080/0144929X.2012.708787

[] Nora Alkaldi and Karen Renaud. 2016. Why Do People Adopt, or Reject, Smart-
phone Password Managers?. In Proceedings of EuroUSEC. eprint on Enlighten:
Publications.

[] Nikola K. Blanchard, Clément Malaingre, and Ted Selker. 2018. Improving se-
curity and usability with guided word choice. 34th Annual Computer Security
Applications Conference – ACSAC (2018).

[] Jeremiah Blocki, Manuel Blum, and Anupam Datta. 2013. Naturally rehearsing
passwords. In International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 361–380.

[] Jeremiah Blocki, Manuel Blum, Anupam Datta, and Santosh Vempala. 2017.
Towards Human Computable Passwords. 8th Innovations in Theoretical Computer
Science Conference – ITCS 2017 (2017).

[] Manuel Blum and Santosh Vempala. 2017. The Complexity of Human Computa-
tion: A Concrete Model with an Application to Passwords. CoRR abs/1707.01204
(2017). arXiv:1707.01204 http://arxiv.org/abs/1707.01204

[] Manuel Blum and Santosh Srinivas Vempala. 2015. Publishable humanly usable se-
cure password creation schemas.. In 3rd AAAI Conference on Human Computation
and Crowdsourcing.

[] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.
The quest to replace passwords: A framework for comparative evaluation of
web authentication schemes. In IEEE Symposium on Security and Privacy. IEEE,
553–567.

[] Centrify. 2014. Centrify Password Survey: Summary. Technical Report. Cen-
trify. https://www.centrify.com/resources/5778-centrify-password-survey-
summary/ Accessed: 2017-12-20.

[] Bismita Choudhury, Patrick Then, Biju Issac, Valliappan Raman, and Manas
Haldar. 2018. A Survey on Biometrics and Cancelable Biometrics Systems.
International Journal of Image and Graphics 18 (01 2018), 1850006. https:
//doi.org/10.1142/S0219467818500067

[] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng
Wang. 2014. The Tangled Web of Password Reuse.. In NDSS, Vol. 14. 23–26.

[] D. III Eastlake, J. Schiller, and S. Crocker. 2005. RFC4086: Randomness Require-
ments for Security. https://tools.ietf.org/html/rfc4086

[] Dinei Florêncio, Cormac Herley, and Paul C. van Oorschot. 2014. Password
Portfolios and the Finite-Effort User: Sustainably Managing Large Numbers of
Accounts. In 23rd USENIX Security Symposium. USENIX Association, San Diego,
CA, 575–590. https://web.archive.org/web/20170823094633/https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/florencio

[] Shirley Gaw and Edward W. Felten. 2006. Password Management Strategies for
Online Accounts. In Proceedings of the Second Symposium on Usable Privacy and
Security (SOUPS ’06). ACM, New York, NY, USA, 44–55. https://doi.org/10.1145/
1143120.1143127

[] Le Quan Ha, E. I. Sicilia-Garcia, Ji Ming, and F. J. Smith. 2002. Extension of Zipf’s
Law to Words and Phrases. In Proceedings of the 19th International Conference on
Computational Linguistics - Volume 1 (COLING ’02). Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, 1–6. https://doi.org/10.3115/1072228.
1072345

[] Nicholas J. Hopper andManuel Blum. 2001. Secure human identification protocols.
In International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 52–66.

[] David E. Kieras and Susan Bovair. 1984. The Role of a Mental Model in Learning
to Operate a Device. Cognitive Science 8, 3 (1984), 255–273.

[] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. 2011. Of
Passwords and People: Measuring the Effect of Password-composition Policies.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’11). ACM, New York, NY, USA, 2595–2604. https://doi.org/10.1145/1978942.
1979321

[] Cynthia Kuo, Sasha Romanosky, and Lorrie Faith Cranor. 2006. Human selection
of mnemonic phrase-based passwords. In Proceedings of the second symposium
on Usable privacy and security. ACM, 67–78.

[] Lastpass. 2016. Psychology of passwords survey. Technical Report. Lastpass.
[] Kevan Lee. 2014. Four Methods to Create a Secure Password You’ll Ac-

tually Remember. https://web.archive.org/web/20190123014846/https:

https://calculator.s3.amazonaws.com/index.html
https://calculator.s3.amazonaws.com/index.html
https://doi.org/10.1080/0144929X.2012.708787
https://doi.org/10.1080/0144929X.2012.708787
http://arxiv.org/abs/https://doi.org/10.1080/0144929X.2012.708787
http://arxiv.org/abs/1707.01204
http://arxiv.org/abs/1707.01204
https://www.centrify.com/resources/5778-centrify-password-survey-summary/
https://www.centrify.com/resources/5778-centrify-password-survey-summary/
https://doi.org/10.1142/S0219467818500067
https://doi.org/10.1142/S0219467818500067
https://tools.ietf.org/html/rfc4086
https://web.archive.org/web/20170823094633/https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/florencio
https://web.archive.org/web/20170823094633/https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/florencio
https://doi.org/10.1145/1143120.1143127
https://doi.org/10.1145/1143120.1143127
https://doi.org/10.3115/1072228.1072345
https://doi.org/10.3115/1072228.1072345
https://doi.org/10.1145/1978942.1979321
https://doi.org/10.1145/1978942.1979321
https://web.archive.org/web/20190123014846/https://www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-password-youll-actually-remember/
https://web.archive.org/web/20190123014846/https://www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-password-youll-actually-remember/

Cue-Pin-Select, a Secure Mental Password Manager Conference’17, July 2017, Washington, DC, USA

//www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-password-
youll-actually-remember/ Accessed: 2017-12-18.

[] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. 2014. The Emperor’s
New Password Manager: Security Analysis of Web-based Password Managers.
In 23rd USENIX Security Symposium. USENIX Association, San Diego, CA, 465–
479. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/li_zhiwei

[] Peter Lipa. 2016. The Security Risks of Using "Forgot My Password" to
Manage Passwords. https://web.archive.org/web/20170802185615/https:
//www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-
password-to-manage-passwords/ Accessed: 2017-12-18.

[] Nasir Memon. 2017. How biometric authentication poses new challenges to our
security and privacy [in the spotlight]. IEEE Signal Processing Magazine 34, 4
(2017), 196–194.

[] George A. Miller. 1956. The magical number seven, plus or minus two: some
limits on our capacity for processing information. Psychological review 63, 2
(1956), 81.

[] F. Mwagwabi, T. McGill, and M. Dixon. 2014. Improving Compliance with
Password Guidelines: How User Perceptions of Passwords and Security Threats
Affect Compliance with Guidelines. In 47th Hawaii International Conference on
System Sciences – HICSS, Vol. 00. 3188–3197. https://doi.org/10.1109/HICSS.2014.
396

[] Peter Norvig. 2009. Natural language corpus data. Beautiful Data (2009), 219–242.
[] M. S. A. Noman Ranak, Saiful Azad, Mohammad Safwan Fathi Bin, Z. Kamal,

and Mohammed Mostafizur Rahman. 2017. An Analysis on Vulnerabilities of
Password Retrying. 5th International Conference on Software Engineering &
Computer System (2017).

[] Samira Samadi, Santosh Vempala, and Adam Tauman Kalai. 2018. Usability of
Humanly Computable Passwords. In 6th AAAI Conference on Human Computation
and Crowdsourcing.

[] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh,
Michelle L. Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. 2014. Can Long Passwords Be Secure and Usable?. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14).
ACM, New York, NY, USA, 2927–2936. https://doi.org/10.1145/2556288.2557377

[] Geordie Stewart and David Lacey. 2012. Death by a thousand facts: Criticis-
ing the technocratic approach to information security awareness. Information
Management & Computer Security 20, 1 (2012), 29–38. https://doi.org/10.1108/
09685221211219182 arXiv:https://doi.org/10.1108/09685221211219182

[] Hung-Min Sun, Yao-Hsin Chen, and Yue-Hsun Lin. 2012. oPass: A user authenti-
cation protocol resistant to password stealing and password reuse attacks. IEEE
Transactions on Information Forensics and Security 7, 2 (2012), 651–663.

[] Umut Topkara, Mikhail J. Atallah, and Mercan Topkara. 2007. Passwords Decay,
Words Endure: Secure and Re-usable Multiple Password Mnemonics. In Proceed-
ings of the 2007 ACM Symposium on Applied Computing (SAC ’07). ACM, New
York, NY, USA, 292–299. https://doi.org/10.1145/1244002.1244072

[] Aaron Toponce. 2010. Password Cards. https://web.archive.org/web/
20121101053014/http://pthree.org/2010/09/21/password-cards/ Accessed: 2017-
12-18.

[] Aaron Toponce. 2011. Strong Passwords NEED Entropy. https:
//web.archive.org/web/20180223215746/https://pthree.org/2011/03/07/strong-
passwords-need-entropy/ Accessed: 2017-12-18.

7 APPENDIX: VARIANTS OF CUE-PIN-SELEC
As it is easy to add vulnerabilities, each variant must be system-
atically analysed. The main variant of Cue-Pin-Select is shown in
Algorithm ??. It incorporates the modifications mentioned above
to make it compatible with most online constraints, not requiring
any change in the security analysis.

Data: Passphrase PHRASE of at least 6 random words
PIN P of 4 random digits
service name NAME

/* If the user struggles with numbers, the PIN
can correspond to the length of the last 4
words */

Result: string S of about 12 characters
1 begin
2 From NAME create string CUE of four characters

/* This user-chosen string should be easy to

remember */

3 if Service requires mixed-case then
4 CUE should be in mixed-case
5 if User had a previous cue for this service then
6 CUE[0] and CUE[2] become the next letters in the

alphabet
7 LEN ←− Length(PHRASE)

8 INDEX ←− 0
9 S ←− []

10 for i = 0 ; i < 4 ; i + + do
11 LETTER ←− CUE[i]

12 while LETTER < PHRASE do
13 LETTER ←− letter following LETTER in the

alphabet
14 INDEX ←− next occurrence of LETTER in

PHRASE after INDEX

/* Or the first occurrence if we reach the

end of PHRASE */

15 INDEX ←− (INDEX + PIN [i] + 3) mod LEN

16 TEMP ←− Concatenate
(PHRASE[INDEX − 2, INDEX − 1, INDEX])

17 if CUE[i] is upper-case then
18 Make TEMP upper-case
19 S ←− Concatenate (S,TEMP)

20 if service requires a number then
21 S ←− Concatenate (S, 0)
22 if service requires a special character then
23 S ←− Concatenate (S, !)
24 if service requires a password of length LEN − y then
25 S ←− Suffix (S,LEN − y)

/* We avoid the security measures by adding
characters that don’t change entropy, and
remove the first few letters if needed */

26 Print S
Algorithm 2: Adaptable Cue-Pin-Select

https://web.archive.org/web/20190123014846/https://www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-password-youll-actually-remember/
https://web.archive.org/web/20190123014846/https://www.lifehacker.com.au/2014/07/four-methods-to-create-a-secure-password-youll-actually-remember/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/li_zhiwei
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/li_zhiwei
https://web.archive.org/web/20170802185615/https://www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-password-to-manage-passwords/
https://web.archive.org/web/20170802185615/https://www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-password-to-manage-passwords/
https://web.archive.org/web/20170802185615/https://www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-password-to-manage-passwords/
https://doi.org/10.1109/HICSS.2014.396
https://doi.org/10.1109/HICSS.2014.396
https://doi.org/10.1145/2556288.2557377
https://doi.org/10.1108/09685221211219182
https://doi.org/10.1108/09685221211219182
http://arxiv.org/abs/https://doi.org/10.1108/09685221211219182
https://doi.org/10.1145/1244002.1244072
https://web.archive.org/web/20121101053014/http://pthree.org/2010/09/21/password-cards/
https://web.archive.org/web/20121101053014/http://pthree.org/2010/09/21/password-cards/
https://web.archive.org/web/20180223215746/https://pthree.org/2011/03/07/strong-passwords-need-entropy/
https://web.archive.org/web/20180223215746/https://pthree.org/2011/03/07/strong-passwords-need-entropy/
https://web.archive.org/web/20180223215746/https://pthree.org/2011/03/07/strong-passwords-need-entropy/

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard, Leila Gabasova, Ted Selker

7.1 Lower security variants
There are many other ways to create variants, and most are prob-
lematic, implying that Cue-Pin-Select might be a local optimum in
the security-usability trade-off.

Fewer words or fewer characters. Reducing the passphrase from
6 to 5 might be tempting. Computer simulations using the same
protocol as before show that with this approach, many single-plain-
text attacks would leave the user with fewer than 28 bits of security,
down to 16 bits in certain cases. Fewer characters in the password
would be imaginable but would lower the individual resistance, and
the number of possibilities would be limited as:
• Having 3 passes in the algorithm would lower the entropy
too much.
• Extracting 1 or 2 characters would require more passes, and
be less user friendly.

Getting rid of the PIN.. Getting rid of the PIN might seem to
simplify the algorithm. This is a dangerous idea; as described above,
this PIN plays an important part in making the algorithm secure. As
cues can be easily guessable by an adversary, they could accumulate
way more information on the passphrase by guessing the cues (and
then could perform targeted attacks to obtain the rest).

If the problem is not using the PIN but remembering it, a viable
password generation scheme with a further reduction on mem-
ory would come from making the PIN from the passphrase. This
alternative that strongly mitigates the risk is to have a PIN that
corresponds to the lengths of the last four words (modulo 10). This
maintains a high level of security while making the PIN trivial to
retrieve.

7.1.1 Using parts of words. Instead of extracting trigrams from
the passphrase, it would be simpler to extract larger character-
groups from words one at a time. For example, one could take a
random letter and the corresponding prefix or suffix to create those
groups, which could be faster and easier for the user. Unfortunately,
this would reduce entropy so much5 that it would either require
more words, more passes or make the passphrase itself insecure,
depending on how many letters are extracted each time.

7.2 Higher security variants
A few variants have either a higher degree of security or more
easily provable and analysable security, coming at the cost of a
reduced usability.

Using letter-values. The first version of this algorithm behaved
differently in the Cue step. Instead of looking for the next letter
identical to the one in the cue, the user was supposed to convert
the cue into a number, and then advance by that many characters
(plus the PIN digit). This means that the distribution of trigrams is
even closer to a uniform one, and also means that any modification

5The multiple potential methods differ somewhat, but the common loss in entropy is
due to two factors. The first is that the set of prefixes and suffixes is in fact not that
large when compared to trigrams that can include part of a suffix and part of a prefix.
The second is the very variable length of prefixes ans suffixes, meaning that some
would be composed of a single letter, drastically diminishing entropy, or instead be
very long (up to 7 characters), diminishing usability while only marginally increasing
entropy.

Data: Passphrase PHRASE of at least 8 random words
PIN P of 4 random digits
service name NAME

Result: string S of 12 characters
1 begin
2 From NAME create string CUE of four characters

/* This user-chosen string should be easy to

remember */

3 INDEX ←− 0
4 L←− Length(P)
5 S ←− []

6 for i = 0 ; i < 4 ; i + + do
7 LETTER ←−Integer(CUE[i])

/* LETTER ←− n, if CUE[i] is the n-th

letter in the alphabet */

8 INDEX ←− INDEX + LETTER + PIN [i] + 3
mod (L)

9 S ←− Concatenate
(S, PHRASE[INDEX − 2, INDEX − 1, INDEX])

10 Print S
Algorithm 3: Higher Security Cue-Pin-Select

to the first letter of the cue entirely changes the rest of the pass-
word. However, the mental load associated with converting a letter
to a number and moving by more than 15 characters on average
slows down the scheme and makes it more complex to explain and
perform. It is still shown in Algorithm ?? for numerically adept
users.

Using more words. Finally, we could imagine having the same
scheme but extracting k ≥ 4 trigrams fromm > 6 words. This is
obviously less usable, but it increases security by a huge factor,
especially in the case of multiple plain-text attacks (when we in-
creasem). For example, going tom = 8 guarantees high entropy
against triple plain-text attacks. Experimentally, every added word
increases entropy by 16 bits, and every added plain-text reduces
entropy by less than 20 bits, although those two procedures also
increase the entropy variance. This is only true as long as the al-
gorithm still goes through the whole passphrase more than once
on average, so adding words until the passphrase has more than 60
characters is a good compromise. Adding more words afterwards
would generally be counterproductive, unless k ≥ 4.

	Abstract
	1 Introduction
	2 The Cue-Pin-Select Scheme
	2.1 Passphrase
	2.2 Password generation algorithm
	2.3 Finding forgotten passwords

	3 Security analysis
	3.1 Preliminary considerations
	3.2 Scalability
	3.3 Brute-force and dictionary attacks
	3.4 Remaining threats

	4 Usability
	4.1 Retrievability
	4.2 Low effort
	4.3 Adaptability

	5 Testing Cue-Pin-Select
	5.1 Protocol
	5.2 Results
	5.3 Feedback

	6 Conclusion
	References
	7 Appendix: variants of Cue-Pin-Selec
	7.1 Lower security variants
	7.2 Higher security variants

