
Usable everlasting encryption using the

pornography infrastructure

Nikola K. Blanchard1 and Siargey Kachanovich2

1 Digitrust, Loria, Université de Lorraine Nikola.K.Blanchard@gmail.com

www.koliaza.com
2 Université Côte d’Azur, INRIA Sophia-Antipolis, France

Abstract. Nine years before Snapchat and its ephemeral messages, Au-
mann, Ding, and Rabin introduced the idea of everlasting security: an
encryption that could not be decrypted after a certain date, no mat-
ter the adversary’s computing power. Their method is efficient but not
adapted to real-life constraints and cannot effectively be used today. This
paper proposes a new solution that makes use of the already existing
communications from pornography distribution networks. The method
proposed has the advantage of being usable off-the-shelf by individuals
with limited technical skills.

Keywords: Usable security · Random beacon · Bounded memory model · One-
time pad

1 Introduction

Between January 5th, 2010 and February 3rd, 2010, Chelsea Manning down-
loaded more than 491 000 confidential documents, smuggled them through se-
curity hidden in a Lady Gaga CD, then onto an SD card hidden in a camera,
before sending them to WikiLeaks through Tor [Mad13]. Later in 2016, an anony-
mous3 whistle-blower nicknamed “John Doe” managed to communicate 2.6TB
of confidential financial documents — known as the Panama Papers — to the
International Consortium of Investigative Journalists [OOWJ16]. In both events,
a more attentive supervisor could probably have prevented or at least detected
the leak as it was happening. The methods used by Chelsea Manning are most
probably by now obsolete, which poses the question of the technological tools
available to the whistle-blowers. An issue is that the whistle-blowing attempts
of highest importance come from agents within large institutional and corporate
actors, which are best suited to detect leaks by storing and decrypting their
agents’ communications.

Irrespective of the ethical considerations, it then seems natural to look for
methods, through which an agent within a large organisation could exfiltrate —

3 The whistle-blower remained anonymous through the usage of Tor and limited com-
munications.



2 N. K. Blanchard et al.

ideally to report criminal activities. This agent’s main issue then becomes the
communication of data, while being watched by an overpowering adversary.

There are encryption methods available today that are currently impossi-
ble to decrypt without a key — e.g. any of the current asymmetric encryption
standards4. For a whistle-blower, however, asymmetrical cryptography cannot
be considered entirely secure, as the current methods all depend on computa-
tional hardness of certain problems, and this hardness is still just an assumption.
An adversary capable of storing the encrypted messages for an arbitrary dura-
tion could theoretically either spend the computational resources when they are
cheaper, or wait for the development of more efficient decryption algorithms.
Furthermore, due to Shannon’s theorems, we know that the only way to avoid a
leak of information is to use a one-time pad with the same length as the original
message [Sha49]. We then require an external source to obtain a one-time pad.

Previous work. In an article written in 2002 [ADR02], Aumann, Ding and Rabin
introduced the first everlasting encryption algorithm, where an adversary that
cannot decrypt the message in a bounded time after its emission will have an
exponentially small probability of being able to decrypt it afterwards. The pe-
culiarity of their model is that it holds even against an adversary that obtains
unbounded computational capabilities right after the cut-off time. For this, the
authors make two central assumptions:

– There exists a common source of public random bits.

– No adversary can store more than a constant fraction of these random bits.

This seems quite reasonable, as it corresponds to the existence of a common
source of public random bits that has a very high throughput to avoid being
stored. However, implementing it in practice reveals a few challenges. An idea
initially mentioned in the original paper was to create a constellation of satellites
that beam random bits at a high rate. This is alas costly, and not directly usable
by the average user. An alternative proposed by the same authors was to access
and compress a large amount of textual web pages, but this creates new problems.

Contributions. Our goals in this paper are three-fold. First, we formalise the
objections above in an agent model. Second, we propose a list of alternative
entropy sources and show that the choice is in fact quite limited. We show that
we can use socially generated data as a primitive for cryptography and that
the main candidate seems to be pornography. We also detail how to use it in
an appropriate way. Finally, we look at the social implications of using such a
system, and why it has advantages beyond the simple cryptographic ones. One
central advantage comes from the very taboo surrounding pornography, making
this choice a strength of the protocol.

4 Notwithstanding side-channel attacks, infected client machines and the possibility
that an actor could have secretly found an algorithm to polynomially solve supposed
hard problems.



Usable everlasting encryption using the pornography infrastructure 3

2 Model and intuition

Our goal is to study a model that is adapted to real world use — for example
two agents in different organisations wanting to exchange securely. Keeping our
introductory example, it could be an agent of a government trying to exfiltrate
some files in a whistle-blowing attempt by communicating them to a journalist.

2.1 Agents

We consider four agents:

– Alice is the agent with the data, who wants to send data to Bob without
getting caught or attracting too much attention.

– Bob just wants to receive Alice’s data.
– Eve is the supervisor of Alice as well as many other agents, and wants to

prevent data leaks. Eve has large capabilities: she can intercept all mes-
sages from her agents, and store all the encrypted ones for potential later
decryption. However, she cannot store all the information exchanged in clear
because of size constraints. Eve also monitors the information exchanged in
clear and tries to detect anomalous patterns.

– Carlos represents the rest of the internet.

Here, realistically, Eve could be the head of Alice’s organisation. She would
then be able to impose rules such that most of the communications have to be
in clear-text — or easily decrypted — with some allowances for higher security
to protect her agents’ privacy, at the cost of storing those for future use if she
has any hint of wrong-doing. Eve stores every communication between Alice
and Bob, and inspects all the exchanges between Alice and Carlos, but can’t
store them as long as Alice is statistically indistinguishable from her colleagues.
Eve possibly has the capability of decrypting some encrypted messages, but this
requires time and is expensive.

We could also consider a slightly more complex model where Bob also has
a supervisor. Because of symmetries in the protocol, both models are close to
equivalent and we focus on the simpler one.

2.2 Intuition behind the protocol

In such a model, a very simple protocol is available. Using asymmetric encryption
— which we can initially assume to be secure for at least a limited time — Alice
sends a set of pseudo-random numbers to Bob. Those are pointers to a common
source of random bits held by Carlos. After they confirm having the same data —
e.g. by the use of a checksum — Alice and Bob can exchange using the equivalent
of a one-time pad. As long as Eve doesn’t store the whole data required, she won’t
be able to decrypt Alice’s messages.

The hard task is then to find a good and discreet source of random bits.
Alternatively, a public source of low-entropy bits can also work as long as a
randomness extractor is used, as in the original paper [ADR02].



4 N. K. Blanchard et al.

3 Entropy sources

3.1 Constraints

Before listing potential sources, we have to look at the constraints we’re facing.

Throughput. The first constraint is quite simple: the data throughput has to be
large enough to make storing it be impossible, or at least extremely expensive. In
practice, this evolves with the hardware costs, but 1 TB/s is a good initial target
to counter all but the largest state actors, as the global cloud storage increases
at the rate of 8TB/s [Cis18a]. A smaller throughput could still be secure —
storing it becoming only extremely expensive — while 10TB/s would be more
than enough for the foreseeable future.

Canonicity. The second constraint is the canonical nature of the entropy source.
As Alice and Bob agree on a set of pointers, these pointers need to target the
same data stream, and both agents must obtain the same data when they try to
access it.

Accessibility. The third constraint is that Alice and Bob should be able to access
Carlos’ random bits, following Alice’s pointers, but in a way that do not set Alice
or Bob apart from their colleagues. As such, the data should be common enough,
in the sense that it is accessed on a regular basis by a large number of people.

3.2 Original sources

The original paper investigated two main sources of entropy: satellite-based ran-
dom beacons, and random web-page compression [ADR02]. Both have some
weaknesses, however, which we will mention before looking at potential replace-
ments.

Satellites. The first entropy source imagined relies on a satellite — or a small
constellation of satellites — that beams random bits. The source being unique,
canonicity is evident. An issue is that, as storage cost decreased exponentially
since the original proposal, a single satellite is far from being an option. Using
SpaceX’s Starlink project as an example of satellite constellation, a total of 1600
satellites would be required to achieve the required bound [dPCC18], for a total
cost above one billion dollars5. Depending on whether the satellite system is
only used for this purpose, the specialised receiving equipment — which could
be costly — could set Alice apart and make her obvious to Eve. Thus, neither
throughput nor accessibility is achieved.

5 Moreover, one could wonder about the entities capable of funding such a system
have any interest in doing so.



Usable everlasting encryption using the pornography infrastructure 5

Random beacons. Although not mentioned in the original paper as it didn’t
exist yet, a simpler possibility would be to use a public random beacon, such as
the NIST randomness beacon [FIP11]). This source only produces 512 bits per
minute today, but its throughput could be increased. An issue is that, even if
it achieved 1TB/s of random bits, the total demand from clients accessing the
beacon would probably be much lower than that in practice. As such, Eve could
simply store all the random bits requested from the beacon. A coordinated effort
could be done to spam the system with bogus requests, but seems unlikely to
succeed6. Moreover, accessing such a service — or going through an anonymising
service such as Tor — would make Alice suspect.

Web page compression. A second original method goes by accessing random web
pages, compressing them, and using this data as a one-time pad. A naive imple-
mentation of this method already fails for simple throughput reasons: considering
only pages indexed by Google and ignoring — for now — multimedia content, the
total throughput is far from enough. The total index size of Google, for example,
is still storable by a powerful adversary [vdBBdK16]. This method also requires
both agents to agree on a large set of web pages and to have common access
to them (without local variability of content due to redirections, which can be
hard to foresee. Accessing these pages might trigger Eve’s detection mechanism
because of their sheer quantity and potential lack of pattern.

3.3 Multimedia sources

As the entropy sources mentioned all have inherent issues, the obvious solution
is to use the multimedia content present online. Specifically, one can use video
sources, as they comprise more than half of the 500TB/s of internet through-
put [Cis18b]. We can consider two kinds of traffic: upstream, with the commu-
nication going from a computer to the network. This is contrasted with down-

stream, which means the communication from the network to computers. Here,
we must be careful, as most of the downstream traffic is many-to-one, with the
same content being distributed to many clients from a single source. Youtube,
for example, represents more than 11% of global downstream traffic but is still
quite storable — and is stored in practice — as its total sizes only increases
at a rate of 40GB/s [Cul18]. We are then left with multiple candidates, all in
the same category: many-to-many video streaming services with many different
sources of content. We will focus mainly on the upstream throughput, as it is
one-to-many and hence presents higher entropy.

Twitch. Twitch, a streaming platform with a focus on video-game streaming, is
the first candidate. It has a sufficiently high throughput, with more than 5% of
all upstream traffic and 2.2 million active content creators each month [Cul18].
This could be good enough, but Aumann et al.’s original model mentions a

6 Akin to the famous but fruitless attempt made against the ECHELON sys-
tem [Dyk01].



6 N. K. Blanchard et al.

problem with this kind of source: the adversary can modify the data before
storing it7. As it turns out, Twitch data being mostly video-game live-stream
from a few major video-games, it can be theoretically compressible with extreme
compression ratios, as long as Eve has a highly advanced data model. Because
of this, it fails to achieve sufficiently high throughput for our purposes.

Video chat. Our second candidate lies in direct video chats and calls, correspond-
ing to Skype, WhatsApp and competing services. This has a large throughput
— 8% of upstream internet traffic — and isn’t easily compressible without high
losses. However, it suffers from two problems. First, it is generally not accessible
to people outside the call, unless they have advanced surveillance capabilities,
making it fail the accessibility constraint. Second, they are distributed and make
it hard to create any canonical indexing.

Pornography . Our last candidate, as strange as it seems, is live pornography.
Besides its non-technical advantages, it is the first candidate to truly satisfy all
our constraints. It is hard to estimate its throughput accurately, but first order
approximations seem to exceed our expectations. At least 4% of Google search
requests concern pornography, and the largest live pornography web site (livejas-
min.com) is consistently ranked in the top 50 most visited web sites worldwide
— behind two other pornography web sites, according to Amazon Alexa. By
itself — and it is only one of many alternatives — this web site already has
an upstream throughput counted in GB/s, with thousands of performers at any
point8, generally with high definition streams [Pre17]. It is also easily accessible
— sometimes at a cost on paying sites — all that is left is making it canonical.

4 Protocol to use the live pornography infrastructure

4.1 Protocol overview

We have found a high-throughput, hard-to-compress and accessible source, but
Alice and Bob still need to agree on the indexing. Here is one potential protocol
to address this, with details on each part shown afterwards:

1. Alice sends Bob an initial message using any asymmetric encryption system.
This messages contains the parameters for the data, in the form of a set of
n complex pointers. Each pointer has data corresponding to a web site9, the

7 This is in opposition to Maurer, where the adversary with bounded memory can
only choose to store or discard data, instead of storing the result of computations
done on this data, potentially to compress it [Mau92,ADR02].

8 This does not even address response streams from viewers, which can increase the
total throughput by one or two orders of magnitude if we manage to make them
canonical.

9 A single web site could be used, making this first element obsolete, but it is safer to
include it to allow for a diversity of web sites, making it more adaptable and giving
the system access to a larger throughput.



Usable everlasting encryption using the pornography infrastructure 7

index of a video stream on that web site, a temporal marker for the start
of the stream and a duration. The pointers do not correspond to existing
videos but to streams in the near future. The time delay depends on the
agents’ constraints, going from 5 minutes to a few days.

2. Alice and Bob both record the streams pointed to, and extract entropy from
those by taking a common start time and using a randomness extractor.

3. They obtain n streams of similar length, and truncate these to equalise the
lengths.

4. If Alice only managed to download n′ streams instead of n, she still applies
the protocol with n′ streams instead.

5. Alice computes a parity stream by XORing her n streams and sets it aside
to send to Bob. This will allow Bob to have some redundancy in the case of
one stream being not correctly acquired.

6. Alice splits her n streams into blocks of small equal length. She then hashes
all the i-th blocks together and concatenates them to obtain a one-time pad.

7. Alice hashes each of her streams independently to get n checksums.
8. Alice sends a message to Bob containing the checksums, the encrypted mes-

sage and the parity stream she set aside.
9. As Bob is supposed to have download the same streams, he checks the hashes

to ensure that they are indeed equal to Alice’s. If Bob is missing one of the
streams, he recomputes them using the parity stream.

10. Bob hashes the streams block-wise — exactly as Alice did — to obtain the
same one-time pad and decrypt Alice’s message.

This protocol has the advantage of requiring only two rounds of one-sided
communications from Alice to Bob, with a delay between the two to have the
time to record the streams. It also integrates some fault tolerance, as bugs are
inevitable. However, it glosses over the pointers, which we must now investigate.

4.2 Making a canonical pointer

As we stated above, each pointer is composed of four elements: a web site URL,
the duration of the video to record, the index of a stream on that web site,
and a frame at which both agents are supposed to start recording within that
stream. The web site’s URL and the duration of the video are easy to define. For
instance, we can assume for simplicity that each web site is well-defined by its
URL 10. The other two elements — stream index and starting frame — require
more work.

Stream index. The index of a stream on the web site is harder to agree on,
as the stream is not well-defined at the time Alice sends her message. Even
worse, streams are generally ordered in a variable way. For example, because
Alice’s and Bob’s accesses are asynchronous, some streams may disappear in the
interval between, hence changing the order of the streams. As such, we must

10 URLs can change depending on countries because of redirections, but the underlying
streams tend to be the same.



8 N. K. Blanchard et al.

give a pointer that statistically will point towards a single stream, even if both
agents do not look it up simultaneously. Finally, the probability of selecting a
stream from all streams should be as close as possible to uniform to maintain
the throughput guarantees.

One potential solution could be for Alice to select a large number x and send
it to Bob along with the pointer. If the web site has k streams when Alice accesses
it, she selects the stream number (x mod k). Due to the strong variability in the
number of streams, this still fails with high probability. We can then pick a large
constant c and take the stream number

(

x mod
⌊

k

c

⌋)

. By taking
⌊

k

c

⌋

instead of
k, we reduce the probability of it changing between the two different accesses.

The number of streams tends to be relatively stable on a given web site, with
the previous method being able to absorb most of the minor variability. However,
this is still not sufficient for our purpose, as the order between two streams can
change much faster than the number of streams. This is especially true when the
streams are ordered by number of viewers. A solution is then to choose a second
criterion that is independent of the one being used for the sorting. Both Alice
and Bob then select the first stream in the list after number

(

x mod
⌊

k

c

⌋)

that
satisfies this criterion11.

Starting frame. Alice and Bob require the exact same streams for Bob to be able
to decrypt the message. This means that they must agree on a starting frame for
the video. In practice, they can simply record and download a certain quantity
of video, and then manually choose a starting frame. This means that they can
easily agree on the start time with a margin of a few seconds, without having to
agree on a shared clock beforehand12.

Along with her pointer, Alice then sends a random value — a nonce —
and both she and Bob hash frames from the video until they get a hash whose
first bits coincide with the random value. By setting an appropriate precision
for this nonce, they can get the same start frame with high probability even
if they started recording at slightly different times. However, this means that
the delay between the times when Alice and Bob start recording has to be at
least one order of magnitude smaller than the duration they expect to record13.
In practice, assuming the delay in accessing the stream is less than 30 seconds,
recording 10 minutes of video is more than enough.

With a canonical stream, a set duration and a starting frame, Alice and Bob
can both extract entropy from the stream (or losslessly compress them with
a good algorithm). By setting n = 10 and sending a single parity stream, we
already have good guarantees: even if Eve manages to store 10% of all streams,
she still has a probability at most 9×10−9 of being able to decrypt the message.

11 If we are looking at response streams, we can use this method recursively.
12 This would be made even harder by the fact that Alice and Bob can have different

latencies.
13 A similar method could be used for the end time, but getting a duration is safer and

increases the chance of all n streams having broadly similar bit-length.



Usable everlasting encryption using the pornography infrastructure 9

5 Social aspects

In addition to its cryptographic feasibility, the protocol that we showed has
multiple advantages that are not directly technical.

Immediate employability. The first advantage of the protocol is that it can be
used directly, without advanced tools or the creation of a large source of entropy.
With the values shown previously, anyone could send a secure email to their
interlocutor, with a list of web sites, stream indices, different times to access
them, duration and nonces. As the system can tolerate a 30 second difference,
it is doable manually without requiring automation of any task. The only step
left is agreeing on a starting frame and computing the one-time pad, which can
be done using off-the-shelf tools.

Plausible deniability. A second advantage is entirely dependent on being based
on pornography, and the fact that pornography is still seen as potentially shame-
ful, but socially tolerated in Western societies. The very shame associated with
it for most people gives Alice plausible deniability. Even if Eve catches her down-
loading the streams onto her work computer, Alice can plead that she was only
doing it for their intrinsic interest, and not as a tool to exfiltrate secrets. This is
statistically true, as 57% of respondents to an online study admitted to having
accessed pornography web sites from their office [McD18].

Firing all the people caught doing so because of security risks would be costly
to Eve because of the sheer number of false positives. Any suspicious behaviour
of Alice — such as hiding a USB key on which the pornography streams are
recorded — becomes partially justified without incriminating Alice further than
for the lighter offence of watching pornography at work.

Public reaction to surveillance. Finally, although government surveillance of cit-
izens’ online activity is now partially tolerated, the public is much more critical
of it when it comes to intimate subjects. The public outcry after Edward Snow-
den’s revelations that government agencies stored and accessed sensitive personal
data is an example of this [Hil14]. This strongly negative image would make it
harder for most countries’ agencies to receive the massive funding required to
store even a portion of the streams considered, especially in Europe after the
implementation of new directives on the right to be forgotten.

6 Issues and extensions

Encoding variability. One issue with the protocol we proposed is that the video
stream can be different due to variations in the stream’s encoding. There are mul-
tiple ways to address this depending on Alice and Bob’s respective constraints.
The first is to hash the received frames (by groups of a few dozen frames), ex-
change the hashes, and only keep the common ones. However, this requires an
additional intermediate round of communication going from Bob to Alice. An



10 N. K. Blanchard et al.

alternative is to use locality-sensitive hashing (LSH) [SC08] to ensure that the
stream is similar on both ends. This strongly reduces entropy, but maintains the
2-round one-sided communication structure.

Improving stream agreement. With the proposed protocol, if the number of
streams k changes between the different access times, the probability of dis-
agreement is 1

c
. This can be further improved at a small cost to Alice and Bob.

Instead of checking k upon getting to the web site, they instead refresh the
counter and track its evolution for a minute. Many methods then become avail-
able, but to limit ourselves to the simplest available to Alice and Bob, they
can just keep track of the maximum and minimum reached by k, and then use
stream

(

x mod
⌊

kmax+kmin

2c

⌋)

. This increases their agreement probability to at
least γ2

×
c−1

c
, where γ is the proportion of overlap on the time they spent

looking at the evolution of k.

Increasing the fault tolerance. The protocol can only correct one missing stream
in its current state. It can potentially be extended to tolerate more erroneous or
missing streams. Thanks to the checksums sent by Alice, Bob can eliminate the
erroneous streams — or even try to fix them, which can be done with probabil-
ity 1

2
if Bob’s starting frame is different from Alice’s, but he recorded a bit more

than the expected duration. We can then reduce the problem to that of fixing
missing streams instead of erroneous ones. To go further, one could use double
error correction as in RAID 6 and derivative systems [JJFT09]. It would also be
possible to use a method based on Shamir’s secret sharing to create some simple
redundancy [Sha79], by sending some additional data with Alice’s second round
message.

The question to ask is therefore: how many missing or erroneous streams
should be tolerated, compared to the number of total streams? This proportion
should be quite higher than the proportion of public data that Eve is supposed to
be able to store, as otherwise it increases her chance of decrypting the message.
However, a high fault tolerance ratio could be used by Alice if she has a single
opportunity to send the message and wants to be sure that it gets decrypted.
This would still be secure if it is a rare occurrence, as Eve would not have the
incentives to invest into the storage necessary to decrypt just a few messages
with strong redundancy.

Addressing already compromised encryption methods. If we decide to push Au-
mann et al.’s fears of an all-powerful adversary further, we can get a slightly
different model that is in practice quite realistic. It is imaginable that Eve could
already have functioning attack schemes against certain encryption methods.
This is consistent with recent events, such as what happened with the NIST
SP800-90 Dual Elliptic curve PRNG [Hal13]. In such a case, Alice can send two
or three pointers, each in its own message encrypted with a different encryption
algorithm. She should, however, be careful with the parity checks to prevent the
decryption of one source from revealing the whole secret.



Usable everlasting encryption using the pornography infrastructure 11

7 Discussion

The main contribution of this paper is a protocol to exfiltrate secrets that can
realistically be used today by people with limited technical skills. It is a con-
cern that our protocol can be used by actors with nefarious intents as well as
well-meaning whistle-blowers. As such, it is not politically neutral. We believe,
however, that it would have limited effect on governmental and industrial espi-
onage. Indeed, those activities generally benefit from advanced technical exper-
tise and highly-refined toolkits due to the powerful financial interests involved.
On the other hand, whistle-blowers generally do not benefit from such a support
network and would be the primary users of this technology.

There are alternatives that satisfy the constraints presented in this paper
and could be used instead of our protocol. For example, we could use slightly
altered data from P2P networks. We could also create a large entropy source
by introducing some noise into the content distribution system of a P2P net-
work. A similar idea could work by slightly modifying the Scuttlebutt protocol
[vRDGT08]. Contrary to our system, these alternatives are not directly employ-
able today, as they require the cooperation of a large set of users. Moreover, they
would require a higher technical ability to implement.

Other entropy source might also appear as the result of two things: the evolu-
tion of our online behaviour and the increasing traffic from the deployment of the
Internet of Things (IoT). Recent tendencies in hardware costs for data storage
and global throughput are currently working in our advantage. If these trends
continue, sources that today represent a small percentage of global throughput
than pornography could become sufficient for our protocol in the future.

Social behaviours online have garnered a lot of interest, especially when it
comes to security [MKV+13,DBC+14] or to subjects that can be taboo [MTC+14].
Besides just analysing these behaviours, we were interested in how we could build
security features based on the social behaviours without directly affecting them.
This is but one example and there might be many more social effects awaiting
to be used as primitives to improve our security and privacy online.

References

[ADR02] Yonatan Aumann, Yan Zong Ding, and Michael O. Rabin. Everlasting
security in the bounded storage model. IEEE Transactions on Information

Theory, 48(6):1668–1680, 2002.
[Cis18a] Cisco. Global cloud index: Forecast and methodology, 2016–2021. Tech-

nical report, Cisco, 2018.
[Cis18b] Cisco. Global visual networking index: Forecast and trends, 2017–2022.

Technical report, Cisco, 2018.
[Cul18] Cam Cullen. Global internet phenomena report. Technical report, Sand-

vine, 2018.
[DBC+14] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and Xi-

aoFeng Wang. The tangled web of password reuse. In NDSS, volume 14,
pages 23–26, 2014.



12 N. K. Blanchard et al.

[dPCC18] Inigo del Portillo, Bruce G. Cameron, and Edward F. Crawley. A techni-
cal comparison of three low earth orbit satellite constellation systems to
provide global broadband. In 69th International Astronautical Congress

2018, 2018.
[Dyk01] Peter Dykstra. Net activists launch campaign to jam ’Echelon’, 2001.
[FIP11] Michael J. Fischer, Michaela Iorga, and René Peralta. A public random-

ness service. In Proceedings of the International Conference on Security

and Cryptography – SECRYPT, pages 434–438. IEEE, 2011.
[Hal13] Thomas C. Hales. The NSA back door to NIST. Notices of the AMS,

61(2):190–19, 2013.
[Hil14] Kashmir Hill. NSA responds to Snowden claim that intercepted nude pics

’routinely’ passed around by employees, 2014.
[JJFT09] Chao Jin, Hong Jiang, Dan Feng, and Lei Tian. P-Code: A new RAID-6

code with optimal properties. In Proceedings of the 23rd international

conference on Supercomputing, pages 360–369. ACM, 2009.
[Mad13] Chase Madar. The passion of Bradley Manning: The story behind the

Wikileaks whistleblower. Verso Books, 2013.
[Mau92] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure ran-

domized cipher. Journal of Cryptology, 5(1):53–66, 1992.
[McD18] Tommie McDonald. How many people watch porn at work will shock you,

2018.
[MKV+13] Michelle L. Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer,

Nicolas Christin, Lorrie Faith Cranor, Patrick Gage Kelley, Richard Shay,
and Blase Ur. Measuring password guessability for an entire university. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer Commu-

nications Security, CCS ’13, pages 173–186, New York, NY, USA, 2013.
ACM.

[MTC+14] Antoine Mazières, Mathieu Trachman, Jean-Philippe Cointet, Baptiste
Coulmont, and Christophe Prieur. Deep tags: toward a quantitative anal-
ysis of online pornography. Porn Studies, 1(1-2):80–95, 2014.

[OOWJ16] Frederik Obermaier, Bastian Obermayer, Vanessa Wormer, and Wolfgang
Jaschensky. About the panama papers. Süddeutsche zeitung, 2016.

[Pre17] Linda Pressly. Cam-girls: Inside the romanian sexcam industry. BBC

News, Bucharest, 2017.
[SC08] Malcolm Slaney and Michael Casey. Locality-sensitive hashing for find-

ing nearest neighbors [lecture notes]. IEEE Signal processing magazine,
25(2):128–131, 2008.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell

system technical journal, 28(4):656–715, 1949.
[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,

22(11):612–613, 1979.
[vdBBdK16] Antal van den Bosch, Toine Bogers, and Maurice de Kunder. Estimating

search engine index size variability: a 9-year longitudinal study. Sciento-

metrics, 107(2):839–856, 2016.
[vRDGT08] Robbert van Renesse, Dan Dumitriu, Valient Gough, and Chris Thomas.

Efficient reconciliation and flow control for anti-entropy protocols. In
Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and

Middleware, LADIS ’08, pages 1–7, New York, NY, USA, 2008. ACM.


