
Game Theory

The purpose of game theory is to study the (optimal) behaviours of agents when they have multiple choices
(strategies), depending on the context, on the amount of information they have and other parameters.

Dilemmas

Let's look at a very simple example, the prisoner's dilemma. Two criminals are caught, and proposed a deal : they
can testify against their partner for a reduced sentence. If prisoner A testi�es against B who doesn't testify, A
doesn't go to jail and B goes for 5 years. If they both stay silent they both go for 1 year, and if they both testify
they both go for 4 years. We can sum it up in a tidy little matrix (where the numbers are the years in jail, which
we try to minimize) :

testify stay silent

testify 4 � 4 0 � 5
stay silent 5 � 0 1 � 1

One can observe that no matter what the other does, one should always testify to reduce the sentence. This
means that both should testify, and in the intuitive sense the only equilibrium is the 4-4, which is far from optimal.
This is called a Nash Equilibrium. A precise de�nition of such an equilibrium is a combination of strategies such
that no player has interest in unilaterally changing their strategy. Such an equilibrium is not necessary bad, as we
can see in the following variant :

testify stay silent

testify 4 � 4 1 � 4
stay silent 4 � 1 1 � 1

There the only equilibrium is the 1-1. Here we can see that from any strategy we can go to the optimal
equilibrium while improving the solution at each step. However, this is not necessarily the case. Suppose two
people want to watch a movie in the cinema. If they meet at the same movie they both win, if not they lose,
but they have di�erent preferences for the movie. We can modelise this as the following game (where we try to
maximize the gain) :

Horror Comedy

Horror 3 � 1 0 � 0
Comedy 0 � 0 1 � 3

Here we have two equilibria, and we can't switch from one to the other. Lets look at the following variant :

Horror Comedy

Horror 1 � 1 0 � 0
Comedy 0 � 0 5 � 5

Here if both players start at Horror, they will have no inclination to go towards Comedy because it temporarily
lowers their gains. We can repeat a game many times and see if the behaviors change. Interestingly, the longer
you play the (usual) prisoner's dilemma, the more you should cooperate. However, one can prove that � if both
know how many turns there are � at the last turn both should testify because it has no consequence on future
cooperation. By induction, we can prove that this is true for the penultimate turn, until we show that the optimal
play is to testify at each turn. This is true as long as both players know how long the game will last (but can also
be true if that's not the case).

Remark. A while ago, some researchers decided to let people compete to see who would code the best program to
play the repeated version of the game (called iterated prisoner's dilemma). It turns out that there is a very simple
strategy that is extremely e�cient : copy whatever the other did on their last move. This means that if the other
cooperates you also cooperate, and everyone wins, but if the other testi�es you punish him at the next turn. The
only way to improve this is to add something called a forgiving method, which is a very small chance to stay silent
even if the other testi�ed at the previous turn.
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So far all the games we have seen had one or two equilibria, but this is not necessarily the case. Consider
Rock-Paper-Scissors :

Rock Paper Scissors
Rock 0 � 0 -1 � 1 1 � -1
Paper 1 � -1 0 � 0 -1 � 1
Scissors -1 � 1 1 � -1 0 � 0

Here we have no Nash equilibrium. However, so far we've only consider what is called pure strategies, where
one chooses a possibility and sticks to it. We could also consider mixed strategies, where we assign a probability
to each action, and do it with that probability. Then there is a nice result by Nash, stating that any game with a
�nite number of players, and for each player a �nite number of pure strategies has a mixed equilibrium (or multiple
equilibria). Here we are only talking about games with perfect information (hence not card games like poker).

Nims

Let's consider another type of game, quite popular in many cultures, called a nim (and very close to the mancara
family of games, like oware or awari). We have a set of n pebbles, and at a player's turn that player removes
between 1 and k pebbles. This is called an impartial game because the moves available only depends on the state
of the game and not whose player's turn it is (as opposed to most board games where one player has a de�ned set
of pawns). There are two di�erent ways to play it :

• Under the �normal� convention, any player who can't make a move loses (so you lose if there are no pebbles
at the beginning of your turn).

• Under the �misère� convention, the player who plays the last move loses.

For the simple nim, there are winning strategies under both conventions. Let's consider the normal convention �rst.
If I manage to remove the last pebble I win. Hence if there are fewer than k pebbles at my turn I win. The only
way to force that is for the opponent to have exactly k + 1 pebbles at the start of his turn (hence leaving me with
at most k pebbles). But to achieve that reliably there needs to be between k + 2 and 2k + 1 pebbles at the start
of my previous turn. The strategy is then to make sure that at the start of your opponent's turn the number of
pebbles is a multiple of k + 1. Then if they remove i pebbles you can remove k + 1− i, and get back to a multiple
of k + 1. Both players can try to implement this strategy, but in this case the winner is :

• The one who starts if the number of pebbles is not initially a multiple of k + 1

• The second one in the other case.

Under the misere convention the goal is similar, except that we want to be left with between 2 and k + 1 pebbles
instead of 1 and k (but the strategy is the same, we just try to get to a multiple of k + 1, plus one).

We can create a more complex kind of game called a nimber, where instead of one stack of pebbles we look at
multiple stacks. The reason to study nims then becomes obvious, due to the following theorem :

Theorem. (Sprague-Grundy) Every impartial game under the normal convention is equivalent to a nimber.

The proof is a bit hard, hence not detailed here, and gives a winning strategy for any such game (either for the
�rst or second player). A winning strategy here is an algorithm that tells a player which action to do at each turn
and automatically wins. It is worth noting that the theorem still sometimes holds under the misere convetion, but
not systematically.

A chocolate problem

Let's look at a chocolate bar, made from tiny rectangles, and composed of m × n pieces. Each piece is then
designated by a number (x, y). This game � called CHOMP � is played under the misere convention (or it wouldn't
be interesting because of the previous theorem), so the one to eat the last piece of chocolate loses. Each turn a
player chooses a piece not yet eaten and eats it, as well as all the pieces which have bigger x and y. Hence when we
eat the piece (x, y) we really eat all the pieces (x′, y′), with x′ ≥ x; y′ ≥ y. This game is interesting for two reasons
:
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• It is generally not solved : the only cases where we know the winning strategy are the ones with m ≤ 3, n ≤ 3
or m = n.

• We still know who has a winning strategy.

For the cases withm ≤ 3 or n ≤ 3, see this recent paper https://www.emis.de/journals/INTEGERS/papers/fg7/fg7.pdf.
For the square, the �rst player eats the piece 2, 2. We are left with one row and one column. The second player
chooses a piece (x, y), and the �rst player only has to take (y, x) (by symmetry). Which means that the �rst player
can always play, and will never take (1, 1).

Remark. This type of symmetrical copying is quite frequent. For example, consider a round table and a collection
of identical coins. The players alternate placing a coin on the table until they can't do that anymore. The �rst
player has a winning strategy : play in the center and then copy the other player's previous move applying a central
symmetry �rst. If the second player can put a coin down somewhere, by symmetry the opposite place will be empty.

Let's now prove that there is a winning strategy for the �rst player (by what is called a strategy stealing
argument). Let's suppose that the second player has a winning strategy. Then the �rst player eats the piece (m,n).
The second player eats any other (x, y). Then no matter what the �rst player does, the second player can force a
win. But what if the �rst player were to play (x, y) as a �rst move instead of (m,n), and then follow that same
strategy ? Then she would win and this shows that the second player has no winning strategy (and as the game
has to end at some point and there can be no tie, it also proves that the �rst player has a winning strategy). This
is because playing (m,n) and skipping your �rst turn are nearly equivalent. Indeed, if the �rst player is allowed to
skip her turn (exactly once), then the �rst player always has a a winning strategy.

Remark. One can also notice that at no point in the game (if the �rst player follows the winning strategy) will we
have a game state that looks like an (m′, n′) rectangle when it's the second player's turn, except if m′ = n′ = 1.
This is because there is a winning strategy for any such position, and the second player would become �rst player
(and reciprocally).

Finding the poisoned one

The �nal problem is not really related to game theory but has links. Suppose you have n = 1000 batches of
chocolate. However, a mad teacher poisoned one of the batches. You can �rent� some students (for extra credit)
to try to see which ones are poisoned. You also have a big party the following day where you plan to distribute
the chocolate but would like to identify which batch is poisoned �rst. The poison takes between 12 and 24 hours
to have an impact. If you had a lot of time you could just ask a student to eat from one batch of chocolate, wait
12 hours, make them eat from another batch, and so on until you see that they are poisoned and remove the one
chocolate they ate between 12 and 24 hours earlier. This however takes a long time, and you only have one day.
How to design a protocol that uses as few students as possible to quickly �nd the chocolate. The protocol should
look like :

• You take k students.

• You make each student eat from a speci�c and personalized subset of batches at the same time.

• You observe which one is still alive after 24 hours.

• You �nd out which batch is poisoned using only the information of who's left.

There are naturally trivial protocols : assign one student per batch and see who dies. This can be improved slightly,
by choosing one batch we assign to no-one. Then if no-one dies that batch is the poisoned one (we go from k = n
to k = n− 1). Our goal is to minimize k and this can be done.

The �rst �smart� method is the following : let's arrange the chocolate batches in a square (or a rectangle). Let's
assign one student to each row, and one to each column (they eat from each batch on their row or column). Then
by �nding which combination of two students died we can always �nd where the poisoned batch is. For n = 1000
we don't have a perfect square so we have two possibilities : getting a square of side 32, where the last row will be
partially unused, or getting a rectangle of size 20× 50. In the second case we need 70 students, and in the �rst 64.
This is much better than the 999 students used previously, but still not optimal.

Remark. If you try to maximize m× n for a constant m+ n (or equivalently minimize m+ n for constant m× n),
the best way is always to have m and n extremely close.
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We can improve the previous bound. Let's now consider putting the students in a cube. The cube has side
10, and each batch is designated by 3 students. Hence we use 30 students total. This can be generalized, and we
can get k k

√
n. This is good, however is still not optimal. To get to the best bound, we can assign to each batch a

number between 1 and n. Then the binary forms are all written with log2(n) bits, all equal to 0 or 1. If we have
one student eat from each batch that has a 1 in �rst position, we can know whether the number corresponding to
the poisoned batch has a 1 in �rst position. By doing this for all log2(n) positions, we can �nd the number of the
batch using log2(n) students. Here this is 10. To show the e�ciency of this, if n = 109, the best method using k k

√
n

gives 57 students, as opposed to 30 for the logarithmic method.
This problem might seem arti�cial but was actually used during the US-Vietnam war. Many US soldiers had

syphillis and the army needed to quickly �nd a way to �nd who was infected with as few tests as possible (because
tests were expensive). As soon as we have multiple poisoned batches the techniques become much harder (generally
using something called disjunct matrices). Finding an optimal protocol (or proving that we have the best possible)
is still an open problem (our upper and lower bounds di�er by a factor log(d) where d is the number of poisoned
batches). To know more, this problem is known as non-adaptive group testing.
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