
Secure and Efficient Password Typo Tolerance
Nikola K. Blanchard

ABSTRACT
As passwords remain the main online authentication method, focus

has shifted from naive entropy to how usability improvements can

increase security. Chatterjee et al. recently introduced the first two

typo-tolerant password checkers, their second being usable in prac-

tice while being able to correct up to 32% of typos. We propose an

alternative framework which corrects up to 57% of typos without

affecting user experience, at no computational cost to the server.

We also provide an algorithm for the more general problem of com-

puting an edit distance between two strings without having direct

access to those strings, and corresponding impossibility results.

CCS CONCEPTS
• Security and privacy → Authentication; Software security
engineering; Hash functions and message authentication codes;

• Human-centered computing→ User centered design.

KEYWORDS
Passwords, Hashing functions, Usable security, Discrete logarithm

ACM Reference Format:
Nikola K. Blanchard. 2019. Secure and Efficient Password Typo Tolerance. In

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Despite recent advances in biometric authentication [39] and ac-

count linking [4], passwords are still the main method of authenti-

cation used online and will probably remain so in the near future.

Countless studies have been written on the pitfalls of password-

based authentication [28, 36, 54], initially focusing on low security,

with users creating bad passwords [9, 42, 52] and repeatedly dodg-

ing security measures [35, 49, 53], but also service providers ignor-

ing best practices on how to secure password databases[23]. More

recently, research on how to make them more usable has made

advances [8, 38], and some of the effects of bad password policies

are being reversed [18, 47], to focus on longer passwords. Unlike

random passwords with special characters which suffer from low

memorability [37], long and simple passwords and passphrases [10,

30, 34, 57] can benefit from humans’ superior ability to memo-

rise strings that make sense, improving both security and usabil-

ity [13, 41, 48]. As authentication becomes an omnipresent task,

being refused access is increasingly frustrating, with forgetting

one’s password being perceived about as frustrating as forgetting

one’s keys [15]. Moreover, just as users sometimes forget their

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Conference’17, July 2017, Washington, DC, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

passwords, they often mistype them. To prevent some of this frus-

tration and improve usability, some services like Facebook have

discreetly adopted typo correction for the 2-3 most frequent typos,

such as forgetting the caps lock or capitalising the first character

of a password on a mobile device [33, 45].

In an innovative paper in 2016 [16], Chatterjee et al. discovered

that a vast majority of authentication failures comes from a few

simple typos, and that it could turn 3% of the users away. They

developed a first typo-tolerant password checker which was highly

secure (and computationally intensive) but could only correct about

20% of typos. The same team developed a second system called

TypTop [17], which is efficient both computationally and memory-

wise, and corrects up to 32% of typos. This systemworks by keeping

a cache of allowed password hashes corresponding to the frequent

typos made by the user, and updates this cache at each successful

authentication. Finally, Woodage and some of the original authors

created a new distribution-sensitive scheme that adjusted the error

rate and hashing time, improving the resistance to certain attacks

and providing better time/security trade-offs [56].

Those systems can actually have a positive impact on security as

they make long passwords — which are more error-prone — much

more usable, lowering the cost of using highly secure passwords.

The issue with the schemes proposed is that they are technically

complex, which often creates difficulties in the implementation [25,

51]. As such, we wondered whether similar performances could

be attained with simpler designs, and how to create a system that

increased the usability even further, while satisfying the following

constraints:

• Usability: the system should make it easier to log into a

service (by correcting as many legitimate typos as possible).

• Security: the system should have similar resistance to present

frameworks against known attacks on passwords.

• Efficiency: the system should require as little computation,

communication and storage as possible.

Main results
Based on a completely different design, we introduce multiple sim-

ple typo-tolerant frameworks, building up to one complete system

that satisfies the different constraints mentioned. It improves usabil-

ity by correcting up to 57.7% of total typos, or up to 91.2% of accept-

able typos. It is efficient, requiring limited client-side and next to no

server-side computation, as well as low communication bandwidth

and limited storage. It is simple, being easily implementable and

compatible with other systems, as well as being retro-compatible

with other frameworks. Finally, it is secure, limiting the risks of

both credential spoofing and credential theft.

We also introduce a simple metric called the keyboard distance,
and a protocol that can compute this distance (as well as the Ham-

ming distance) between a queried string and a secret string, without

it being possible to find the secret string in polynomial time (as-

suming the security of the discrete logarithm).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard

Finally, we show some simple lower bounds: for a large set of

edit distances, given an oracle to that distance between a secret

string and a queried string, it is possible to get the secret string

in a polynomial number of queries. This holds even in the case of

probabilistic and approximate distances. This means that any gen-

eral typo-correction system that can compute arbitrary distances is

vulnerable in at most a polynomial number of queries. The previous

protocol’s resistance to this method comes from having queries of

non-uniform — and potentially exponential — complexity.

2 TYPO-TOLERANT FRAMEWORKS
The goal of this section is to provide an analysis of themost frequent

user errors before introducing three frameworks. Each framework

builds on the previous ones, correcting more errors at the cost

of increasing storage and computation, to obtain typo-tolerant

password checkers that can handle substitutions, transpositions,

and finally insertions. A final complete framework then integrates

all the features while being efficient, secure and easy to implement.

Here, a framework is a set of three algorithms: one to create a

password (key-setting), one for the user to compute and send their

password to the server when asked their credentials (key-sending),
and the last one for the server to check whether the credentials re-

ceived should be accepted (key-checking). Frameworks should work

with a variety of typo tolerance policies, such as only accepting

capitalisation errors, or only certain forms of keyboard proximity

errors (accepting an "r" instead of "e", but not a "d").

For example, the simplest efficient typo-checking framework

would consist in storing the value for both the hash of the normal

password and the hash of the string corresponding to the same

password in caps lock. Around 15% of typos could be handled this

way, at the cost of storing and comparing a single additional hash.

The simplest complete system is to store — or send — hashes corre-

sponding to all possible typos. The problem is that, depending on

the typos corrected, this system requires the storage or communi-

cation of hundreds of hashes, making the system less efficient and

more vulnerable to random collisions.

Throughout this paper, n will be the length of the passwords

considered. To make things simpler and more adaptable, the frame-

works are built to work using two primitive functions which they

call multiple times, HASH and PRNG — for deterministic Pseudo

Random Number Generator. The security analyses will focus on

Argon2 as HASH and SHA-3 as a PRNG, although other crypto-

graphic hash functions and PRNGs could be used if vulnerabilities

were found in the ones mentioned. The main constraint is that the

PRNG should be secure on correlated and non-uniform inputs.

2.1 Typology of errors
As motivation for the first error-tolerant password checker, Chat-

terjee et al. ran an experiment using Mechanical Turk to look at the

types of errors committed by users typing other people’s password.

They published a summary analysis with their algorithm in [16]

and made the data publicly accessible. In a follow-up paper [17],

they also ran a second study where users were asked to repeatedly

enter a password over time (at intervals of at least one hour).

In the original study, the authors chose to only look at strings

whose Damerau-Levenshtein distance was less than 2 [19], as well

Typo category Wrong password %

Single substitution 29.7

QWERTYnumpad neighbour 14.0

Single shift 8.5

Single deletion 19.4

Caps lock 14.7

Single insertion 13.1

Space 2.0

Duplicated letter 3.8

Single transposition 3.9

Other 19.0

Table 1: Types of typos recomputed on the original data-set
from [16], over all passwords at distance at most 6 from the
correct version, plus complete capitalisation errors.
as errors where the caps lock was inverted for the whole string.

We decided to run a more detailed analysis of the first data-set,

shown in Table 1. Some of the errors considered in [16] would

probably not happen in the real world, mostly inserting spaces

and transcription errors — such as confusing "1" and "l". Although

this creates differences between analyses, one common finding is

that handling caps lock as well as single substitution, transposition,

insertion and shifting errors would handle 65% to 73.9% of errors.

Two main questions arise when looking at such data: which

errors are legitimate typos, and which legitimate typos should be

corrected. Considering the length of passwords in the database,

we chose to look at Levenshtein distances up to 5, discounting

transcription errors. From this, the set of acceptable typos will corre-
spond to typos at distance at most 2, except ones involving deletions

or substitutions by a distant character. We chose to exclude both,

as deletions would greatly increase the risk of targeted attacks as

shown in the next section, and to only allow proximity substitu-

tions. Such a substitution happens when the key pressed is one of

the six keys closest to the original one (two above, two below, and

one on each side).

2.2 General intuition
The first framework addresses the most frequent typo: single ad-

jacent substitution errors, where one character in the password

is replaced by another neighbouring character. For example, an

"e" could be replaced by an "r", a proximity error that should be

accepted, whereas replacing "e" by "m" should lead the algorithm to

reject. As with all subsequent algorithms, it relies on the agreement

over a canonical keyboard map, assigning every key-press to an

integer. For example, one could use the JavaScript key codes, whose

main list goes from 8 till 255, but less than 100 of those numbers

correspond to usual keys. Instead of the layout, the keyboard map

depends on a map from key-presses (such as "a" or "SHIFT+a").

All the frameworks are similarities, relying on architectures

similar to the following :

• The password of length n is split into n partial passwords,

each missing one character.

• The partial passwords are concatenated with a salt
1
before

being hashed.

• Pseudorandom permutations within the set of character

codes are computed (generally [0; 255], based on the hashes.

1
The salt here can be any arbitrary string, using the login plus a number works, the

main goal being to avoid precomputed tables.

Secure and Efficient Password Typo Tolerance Conference’17, July 2017, Washington, DC, USA

• Each excluded character and all the adjoining ones on the

keyboard are encoded using the corresponding permutation.

• The user sends the authentication message, a list of n pairs

of (hash, number list).

• If one hash is correct, and the stored number is in the corre-

sponding list, the server authenticates the user.

2.3 Substitution tolerance
2.3.1 Intuition for the general scheme. The substitution-tolerant
key-setting algorithm (Algorithm 2, and Figure 1) works by creating

hashes of every substring of lengthn−1—whichwe denote as the Pi ,
where i ∈ [1;n] is the position of the missing — or, rather, extracted

— character. This means that, for any substitution of a single char-

acter, one hash — not containing that character — will be correct.

We could stop the algorithm here and send the list of hashes, but

this would allow specific kinds of targeted attacks examined in Sec-

tion 3. Sending — or storing — the remaining character in plaintext

would give a potential adversary too much information, and even

the whole password if this is done for all characters independently.

For this reason, the remaining character is also sent, although in an

encrypted fashion, with the key depending on the other characters.

Here, this encryption is just a pseudorandom permutation, entirely

determined by the other characters and computed lazily through

Brassard’s virtually initialised array algorithm [11].

The key-sending algorithm (Algorithm 2) works in a similar

fashion to Algorithm 2. However, instead of sending the hashes

of every Pi and the image of the extracted character through the

permutation, it sends the image of the extracted character, its shifted

version (inverted case) as well as its neighbours on the keyboard.

Finally, Algorithm 3 checks that the full hash (H0) is correct. If it

isn’t, it checks that at least one partial hash is correct and that the

corresponding extracted character is among the ones allowed.

PASSWOR D

HASH
"SALT+PASSWOR"

NEIGHBOUR LIST :
(E,R,S,D,F,X,C)

CONCATENATE
WITH SALT N°2

USE AS SEED
FOR RANDOM
PERMUTATION

RANDOM NUMBER
LIST:

(11,89,63,19,109,5,96)

SERVER
SIDE

ARE BOTH
HASHES EQUAL ?

IS STORED NUMBER IN
NUMBER LIST ?

ACCEPT IF BOTH
TRUE

STAYS
IDENTICAL

WITH A
TYPO ON

"D"

CONTAINS IMAGE
OF "D" IF

NEIGHBOURING
KEY HIT INSTEAD

CONCATENATE
WITH SALT N°1

STORED HASH STORED IMAGE OF D

CLIENT
SIDESENT TO

SERVER

Figure 1: Diagram for the substitution tolerant framework.
The real framework removes each letter of the password in
parallel, and accepts only if one execution accepts.

Data: Salts S0, S1, S2, Password P of length n
Keyboard map M : Keys→ [0; 255]

Hash function HASH

Pseudorandom number generator PRNG

Result: Main hash and list of n (hash / integer) pairs

1 begin
2 H0 ←−HASH(Concatenate(S0, P))
3 for i from 1 to n do
4 Pi ←− P \ P [i] /* Removing the i-th letter from

the string */

5 Hi ←−HASH(Concatenate(S1, Pi))
6 Random_bits←− PRNG(Concatenate(S2, Pi))
7 πi ←− Brassard(Random_bits)

8 /* The (pseudo) random bits are used lazily
each time the permutation is called for a
new number */

9 Ki ←− πi (M (P [i]))
10 return (H0, (Hi , Ki)1≤i≤n)

Algorithm 1: Key-setting substitution-tolerant algorithm

Data: Salts S0, S1, S2, Password P of length n
Keyboard map M : Keys→ [0; 255]

Hash function HASH, Pseudorandom number generator PRNG

Result: Main hash and list of n (hash / integer list) pairs

1 begin
2 H0 ←− HASH(Concatenate(S0, P))
3 for i from 1 to n do
4 Pi ←− P \ P [i]
5 Hi ←−HASH(Concatenate(S1, Pi))
6 Random_bits←− PRNG(Concatenate(S2, Pi))
7 πi ←− Brassard(Random_bits)

8 Li ←− [πi (M (P [i]))]
9 Li .append(πi (M (SHIFT(P [i])))

10 foreach a ∈ Neighbours(P [i]) do
11 Li .append(πi (M (a))
12 Li .sort()
13 return (H0, (Hi , Li)1≤i≤n)

Algorithm 2: Key-sending substitution-tolerant algorithm

Data: Length n, Original list (Hi , Ki) of (hash/integer) pairs
received list (H ′i , Li) of (hash / integer list) pairs

Result: ACCEPT if and only if the password corresponds to the

correct one or a version with an acceptable typo.

1 begin
2 if H0 = H ′

0
then

3 return ACCEPT

4 else
5 for i from 1 to n do
6 if Hi = H ′i then
7 for j from 1 to |Li | do
8 if Li [j] = Ki then
9 return ACCEPT

10 return REJECT

Algorithm 3: Key-checking substitution-tolerant algorithm

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard

2.3.2 Design choices and security. Two approaches could be used

to compare the extracted character. The first, shown here, sends

the list of neighbours of the typed character. If the typed character

is a neighbour of the correct one, then the image of the correct one

through the permutation will be among the numbers sent. The other

way is to store the list of neighbours during the key-setting and

only send the image of the typed character. This has the advantage

of slightly lowering the amount of data transferred but makes the

system less adaptable to different keyboards. For example, we could

consider a user that sets their key on a QWERTY keyboard layout

and then uses an AZERTY layout. If instead of typing an "E" in

their password they type a ’Z’, the password would get rejected, as

it is not in the list of neighbours on the initial keyboard. With the

version shown in the algorithm, only the present set of neighbours

counts
2
. The size of the set of neighbours varies which can lead

to vulnerabilities if it isn’t addressed, as "1" has fewer neighbours

than "g". A solution to this is proposed in the complete algorithm.

Instead of a permutation, a function that goes from [0, 255] to a

greater set could also be used, as it could increase the security by

reducing the probability that an adversary could guess the correct

number. This is a trade-off between simplicity, efficiency, and secu-

rity. The main advantage is that it would lower the probability of

success of attacks with hashes of different dictionary words. This is

not relevant as the advantage of this type of attacks over dictionary

attacks is limited in scope by the already low probability of getting

a correct number in the list (≤ 7

255
).

Our algorithms call Brassard’s algorithm to lazily get the per-

mutation by computing the image of an element only when it

is needed (instead of computing all images at the initialisation,

through the Fisher-Yates algorithm [7] for example). In our case, we

require 8 pseudorandom bits per element. We need the images of

k = |Neighbours(P[i])| random element chosen uniformly among

all possible permutations in a deterministic way dependent on the

seed. Fisher-Yates’ algorithm would require about 713 random bits

if implemented correctly
3
, which could be attainable using a longer

salt for the seed (hundreds of bits) and a PRNGwith variable output.

Using Brassard’s algorithm [11], we require at most 8 bits per call,

and at most 80 bits in the calls made by the key-sending algorithm.

This allows us to use most PRNG with fixed output length. In all

cases, the algorithm used to get the random bits should not be too

efficient, as seen in Section 3.

The presence of the full hash H0 is not strictly necessary, but it

allows the server to check if everything is right in one comparison.

An alternative would be to check (H1,L[1]) and (H2,L[2]), thus
detecting the presence of an error, in which case at least one of the

hashes would be incorrect. The other hashes can be checked lazily

if both tests lead to rejection.

2.4 Transposition tolerance
2.4.1 Problem and intuition. On top of single substitution errors,

the second framework also corrects transposition errors, where the

string "correction" becomes "correctoin". In the first framework, a

single letter was extracted before hashing, but this method couldn’t

2
This does, however, require the system to know which keyboard layout the user is

using, which is not always easy in practice.

3
The information lower bound is 373 bits, but low-efficiency implementations that

require a new random integer at each call would require up to 6400 random bits.

detect or correct transpositions. This second framework works

similarly but extracts two adjacent letters each time and encodes

the extracted characters through four different permutations. The

first two permutations are used to identify the neighbours of each

character and prevent single proximity errors. The other two are

used to check whether the two characters are transposed. Instead

of sending a hash and a list of neighbours for each character, the

key-sending algorithm sends a hash and a set of lists of neighbours

for each pair of adjacent characters.

2.4.2 Inner workings. In the transposition-tolerant framework
4
,

two lists, LAi and LBi , represent the sets of neighbours of the first
and second extracted characters for 0 ≤ i ≤ n − 1. The checking
algorithm accepts if three conditions are true for one index: the

hash is correct, one of the two extracted characters is in the set of

allowed characters and, finally, the second extracted character is

correct (which is true if it has the first index in LAi or LBi).

2.4.3 Design choices. In this framework, the use of different per-

mutations to encode the two excluded characters is essential, as

otherwise the security would be inadvisably lowered. The first two

permutations have to be different to prevent an adversary from

finding out whether the two characters are neighbours, or have

common neighbours. The other two have to be different to prevent

adversaries from finding whether a character is present twice in a

row.

2.4.4 Optimisation. If we don’t allow double proximity errors, LBi
is redundant with LAi+1, and all single-character typos that are

not on the last letter of the password could be corrected using only

LAi+1. We still include it as it only marginally increases computing

costs client-side and increases commucation costs by at most 19%.

2.5 Insertion tolerance
2.5.1 Problem and intuition. Insertions can be handled by combin-

ing the previous two frameworks: the key-setting algorithm sends

information corresponding to both previous frameworks, and the

key-sending algorithm is the same as Algorithm 2. Using both kinds

of hashes, we can detect and evaluate insertions as well as proximity

substitutions and transpositions.

Suppose that the password typed has one extra character. We

can then check the hashes created by Algorithm 2, as two of them

will correspond to hashes computed for a single removed character.

For one of the two, the corresponding extracted character is then

the same as the one received.

2.5.2 Security. The question of which insertions should be allowed
is non-trivial. For example, duplicated letters or added spaces seem

like good candidates, whereas letters far from the nearby keysmight

not be legitimate typos. Additionally, some insertions go with other

typos, especially with shift errors. This happens when, instead of

hitting the shift key followed by the targeted letter, the user hits a

key next to the shift key, committing a double typo. All those can

be corrected by this framework, depending on what is chosen to be

the list of neighbours. To address all the comments up to here, we

then show the complete framework.

4
The pseudocode for this framework and the following two is shown in the appendix.

Secure and Efficient Password Typo Tolerance Conference’17, July 2017, Washington, DC, USA

2.6 Complete framework
The previous framework can easily be made into a complete frame-

work that is ready for implementation by tweaking a few things.

The first is to add an additional hash to account for the inverted

case. The second is to make small passwords indistinguishable in

the database, padding
5
them all to length 16. The letter lists can

be made of equal length by adding dummy numbers to prevent

an adversary from gaining information through the number of

neighbours. Finally, we also replace the arbitrary hash function

and PRNG by SHA3-256 and use Argon2 as a key stretcher. The

parameters on Argon2 require fine-tuning depending on the as-

sumed client hardware and the estimated abilities of adversaries,

as they create a direct trade-off between usability (in login delay)

and resistance to credential theft attacks.

2.7 Performance summary
The frameworks shown differ in terms of the proportion of typos

handled, computational costs, communication requirements and

storage space needed. Those can also vary with the paremeters of

each framework’s implementation, such as the list of allowed typos.

Table 2 sums up the performance on each front. The difference

between the conservative and tolerant methods corresponds to

the strategy on accepting random insertions, the first one accept-

ing only duplicated letters or spaces, and the second accepting all

insertions. To note, the additional 15.5% of corrected typos from

handling caps lock in the complete framework could also be added

to any of the other frameworks. The final algorithm only handles

55.7% of passwords with typo, a proportion mostly bounded by our

decision to ignore any typo that includes a deletion (at least 22.7%

of mistyped passwords). If we consider all the typos we do not want

to accept as they do not seem legitimate or pose a security risk

— deletions, substitutions which are not with adjacent characters,

or more than 2 typos — the forbidden typos represent 36.7% of all

mistyped passwords. The complete framework can then handle up

to 91.2% of acceptable typos.

Algorithm Substitution Transposition Insertion Complete

Computation

Permutations # n 4n − 4 4n − 4 max(4(n − 1), 60)
Hashes # n + 1 n n max(n + 1, 17)
Numbers # n × k (n − 1) × 4k (n − 1) × 4k max(4(n − 1)k, 60k)

Storage

Hashes # n + 1 n 2n max(2n + 1, 33)
Numbers # n 4n 5n max(5n, 80)

Typos handled

Conservative 24.2 % 28.4 % 34.5 % 50.2 %

Tolerant 24.2 % 28.4 % 42.2 % 57.7 %

Table 2: Performance comparison of the four frameworks,
showing the computation, communication and storage re-
quirements of each, as well as the proportion of total typos
handled, depending on the strategy used.

3 SECURITY ANALYSIS
Our frameworks seek to improve authentication systems, which

have two goals: preventing people without correct credentials from

logging in, and preventing people with — potentially illegitimate —
access to the database from getting the credentials of other users.

5
This "16" is an arbitrary parameter that is a good compromise to prevent revealing

small passwords while not costing too much in storage and time.

This second point is crucial, as credential stuffing attacks — where

an adversary steals a list of login/password pairs on an unsecured

website and tests them systematically on other websites — are

increasingly frequent, with up to 91% of login attempts coming from

credential stuffing, of which on average 0.50% are successful [44].

3.1 Preventing access
As the frameworks considered seek to tolerate certain typos, they

inevitably cause an increase in the probability of a successful login

attempt by an adversary. Which typos are allowed is then a crucial

decision. For example, allowing single deletions might seem like a

good idea: it corresponds to many typos, and only reduces the en-

tropy by a limited amount (around 5 bits on average). However, this

would be extremely detrimental in one important case: partial pass-

word re-use. As users become aware of credential stuffing, some

make small variations to prevent such automated attacks [42, 55].

Accepting deletions makes such attacks much more likely to suc-

ceed, which is why a substitution— being very similar to a deletion

in terms of security— should only be accepted if the substituted let-

ter is a neighbour of the original. As long as the adversary follows

the protocol, the security loss entirely comes from the fact that

more passwords are allowed. With a generally lax typo-tolerance

system this means that the set of acceptable strings goes from 1 to

around 100 for a 12-character password
6
. This makes bruteforce

and dictionary attacks somewhat easier, but as countermeasures

are shifting the online setting away from those and towards more

refined attacks, this should not be a risk for users with passwords

of reasonable strength. Typo correction also makes it easier to use

safer, longer passwords — which come with a higher risk of typos.

The goal here is to prove that the security loss is exactly that

of the added typos. In other words, those frameworks should not

reduce the security much beyond accepting the allowed typos. This

is done by proving the following lemma in which smart bruteforce
means that the bruteforce follows the frequent password list by

decreasing frequency. The proof is at the end of subsection 3.2.

Lemma 1. Using only the username and knowledge of the frame-
work, finding a correct authentication message for a password of
length ≤ 16 takes in expectation at least 1

114
times as many queries

as a smart bruteforce attack against a system without typo correction.

Remark 1. Although the bound of
1

114
sounds bad, there are two

reasons that explain and compensate for this. The first is that a

query in this system corresponds to a set of queries in a standard

system, so the number of queries naturally goes down (but the

bound on the number of queries accepted by the server before

triggering an alarm should go down accordingly). The second point

is that for this bound to be reached, the bruteforce algorithm must

be able to distribute queries in an optimal way to make full use of

the complex query.

Remark 2. The lemma here could also be applied to passwords

of length strictly greater than 16, but this is unnecessary as these

passwords are generally not vulnerable to the attacks considered.

3.1.1 Intuition. There are two ways an adversary could obtain

access if they have no prior information besides the username.

6
This discounts insertions as the benefit from testing longer passwords is anecdotal.

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard

The first is to take a set of passwords and send each through the

key-sending algorithm, to gain access with either the password

itself or a version with an allowed typo. The second is to fake the

algorithm’s outputs and send at least partially incorrect messages

to the server, in an attempt to attack the hash directly.

Let’s suppose that an adversary decides to send partially inau-

thentic login queries. Each query is composed of a main hash, and

a set of (hash, number lists) pairs. All the hashes in the complete

framework are salted, and the hash space — using for example

SHA3-256 — is much greater than the usual password space. This

means that sending a random string instead of a real hash can be

made to have a lower probability of success (per time unit) than

computing a real password hash. For example, assuming a very

generous bound of 160-bit passwords (uniformly random password

on 20 ASCII characters), it would still take at least 10
26

login queries

before having a reasonable chance of getting a correct hash, ev-

idently costing more than computing one of the correct hashes
7
.

Taking a more realistic bound on passwords would only decrease

the success probability. As the limiting factor lies in the number of

queries, an adversary trying to maximise their chance of success

would accurately compute all the hashes in the query.

Because sending random hashes is not efficient, an adversary

could instead send the same hash in multiple positions, with dif-

ferent additional letters each time. This way, they could cover all

possibilities for a single missing letter in only two or three login

queries. The checking system couldn’t easily prevent this, as com-

mon hashes would be possible (for example, the password "encoded"
has two identical hashes at the end corresponding to removing ei-

ther "de" or "ed"). Moreover, n−1 correct hashes could be computed

and then checked in parallel through interweaving.

This effectively increases the efficiency of an adversary by test-

ing multiple passwords per login query. The main deterrent against

such attacks is a limit on the number of queries accepted by the

service provider (or rate-limiting). As the method proposed greatly

increases the probability of a user logging in successfully when

they make a typo, the maximum number of queries allowed can be

reduced accordingly without lowering the usability. Additionally,

one could make a counter for a given hash to prevent bruteforcing

them: if the server receives a correct partial hash with a wrong

additional character, they could temporarily reject all typoed sub-

missions from the user. Essentially, this would be equivalent to typo

correction on the first try, and normal password checking on all

subsequent tries.

Proof. Any authentication message that doesn’t follow the cor-

rect structure can be discarded. A message is deemed correct if

at least one of the hashes is correct, and the corresponding num-

bers are also correct. A message must either contain a correct

hash/number pair, or a correct number and a hash collision. As the

hash space is much greater than the space of 16-character pass-

words, using random hashes to find collisions has a probability

of success so low (< 2
−128

) that it is irrelevant. As the checking

algorithm prevents timing attacks, finding the hash by iteslf is not

possible. The adversary must then have at least one (hash, number

list) pair correct. Every query they make has 18 possibilities of

7
This assumes that the adversary knows the salt, which is reasonable as it could, for

example, be computed from the login.

getting an acceptance: one for the first two hashes, and one for

each of the 16 (hash, number list) pairs. Each query has 7 chances,

hence an uper bound of at most 114 acceptance chances. □

3.2 Obtaining credentials from the database
The second attack can be performed by an adversary with access

to the database and focuses on obtaining correct pairs of password

and email/login credentials for use against other targets. The goal

is then to prove the following lemma:

Lemma 2. Let’s consider an adversary with access to the user-
names, corresponding (password hash, number) lists and transcripts
of successful login interactions. Using generic attacks, they require at
least 1

16
as much computing power to get a password of length < 16

from a single user as if the database only stored simple hashes of the
passwords without typo-correction.

Remark 3. Once again, the bound of 1

16
corresponds to a worst case

analysis. Empirical data shows that the real speedup is close to 1.5.

3.2.1 Securing structural information. The first step to prevent

credential theft is to make sure that the database itself doesn’t give

structural information on the passwords through the way it stores

them. For example, storing hash lists of varying lengths would

reveal the length of the stored passwords, indicating to adversaries

the ones that would be easiest to crack.

For the users with passwords of length < 10, exactly two hashes

are stored, and the adversary gains at most a factor 2 in the brute-

forcing (less in practice due to non-uniform distribution). Let’s now

consider users with passwords of lengths ≥ 10.

Deterministically adding extra characters to the end of the pass-

word to reach a common length prevents this kind of attack. How-

ever, we should avoid compromising users with already long pass-

words by imposing length upper limits. Adding characters only if

the passwords are of length less than 16 seems a good compromise,

with only a few passwords standing out from the database as being

extra-hard. Despite the uniformity of the database, a successful

attack could still happen if an adversary also has access to the mes-

sages received by the database. In messages received, the length of

the allowed key list — the list of numbers — is also important as

it can give a lot of information on the position of the keys on the

keyboard. To avoid this, having a few numbers on the client-side

reserved for non-existent keys and filling up the neighbour list with

those prevents this information leak.

3.2.2 Cracking the hashes. We are left with the problem of comput-

ing passwords from a set of list of hashes and numbers, with each

list having a single salt. The adversary has three avenues of attack.

The first is by bruteforce: enumerate all the possible passwords

and check when they are correct by comparing with the recorded

hashes. To prevent this attack, key stretching
8
is central but must be

used wisely, to make the computation of each hash expensive and

prevent the adversary from bruteforcing billions of passwords per

second [50]. The second attack uses hashes directly and computes

their preimages. The third attack uses the recorded numbers to get

information on specific letters of the password and simplify the

rest of the work. We will start by the second and third attacks.

8
Essentially, key stretching is the process of running the hash function on itself a fixed

number of times to make computation slower — and bruteforce more expensive.

Secure and Efficient Password Typo Tolerance Conference’17, July 2017, Washington, DC, USA

With the second attack, considering each list independently,

finding the preimage of a single hash is enough for the attacker,

as the number of possibilities left for the missing letter becomes

trivial. We are then looking at multi-target preimage attacks with

a promise on the structure of the targets (that their preimages are

close together
9
). As stated in [5], however, the resistance of even

SHA3-256 against generic attacks is much stronger than the security

requirements for passwords. This means that the main weakness

doesn’t come from finding the preimage of the password hashes.

When it comes to the third avenue of attack, collisions are fre-

quent, as opposed to hashes, as the image space of each permutation

is small. If computing the permutations were more efficient than

computing the hashes, it would be possible for the adversary to

eliminate lots of potential passwords quickly. Two methods can be

used to prevent this. The first is to run the key stretching method

on each random bit computation. The second goes by using the

same key stretcher for both the PRNG and the hashing. This can

be done by first using the key stretcher on PBi , hashing the out-

put with different salts to get the random permutations and finally

the hash itself. This could slightly affect preimage resistance but

makes bruteforce attacks to find the permuted characters at most

as efficient as the bruteforce attacks against the hash itself. Indeed,

if an adversary wants to eliminate possibilities for the k-th charac-

ter, they must compute the permuted character for each password,

and then eliminate all the impossible ones. If they don’t run the

procedure for the correct password they can’t reliably eliminate

passwords or characters, and if they do they automatically get the

correct hashes (and the answer) at no additional cost.

3.2.3 Bruteforcing the passwords. The main attack left is then to

use bruteforce from the password side, testing every password until

the adversary finds one with the correct hash. The traditional way

to prevent this is to use key stretchingmethods such as PBKDF2 [29]

— or rather Argon2 [6], which also has security guarantees against

generic attacks. This is where our frameworks have a security flaw,

as we have at least 16 different hashes instead of one to create

and send the password, but the adversary only has to find one.

Making all of them go through key stretching methods either takes

more time or lowers the number of iterations on each of them
10
.

Two factors mitigate this flaw: first, even running a key stretching

method for a few milliseconds is enough to make bruteforce attacks

very costly. Assuming we use Argon2 — which prevents efficient

large parallelisation — for 2ms on each hash, cracking a 48-bit

password would naively take an average of sixteen billion seconds,

or 544 years, on the same machine. This does not use the fact

that it is enough to guess one of the hashes containing a typo.

Assuming a 5-bit loss of entropy— which requires a well-optimised

bruteforcing algorithm — the expected time is still more than 17

years. We simulated the use of this method on the Rockyou leaked

password data-set [31, 54], bruteforcing until we obtained hashes

for the 50% most frequent passwords of length > 10. The speedup

varied depending on which two characters were removed, as shown

in Table 3, but stayed below 1.5.

9
It would be interesting to check whether tist kind of promise problemmakes preimage

computation any easier, but in any case, they could also be made irrelevant by the use

of different salts for each of the (n − 1) password hashes.

10
Using a key stretcher on the central salts that are used afterwards by the rest of the

algorithm centralises this proof of work but does not provide any extra security.

Characters removed none 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

Unique passwords (×106) 4.40 4.26 4.33 4.29 4.29 4.28 4.26 4.22 4.12 3.96

Proportion for 50% 33.1 29.9 31.4 30.6 30.7 30.4 30.0 29.0 26.7 23.0

Speedup 1 1.11 1.05 1.08 1.08 1.09 1.10 1.14 1.24 1.44

Table 3: Speedup gained for dictionary attacks by remov-
ing 2 characters from Rockyou passwords of length >10.
The first line has the number of unique passwords (in mil-
lions), and the second indicates the proportion of passwords
needed to get the 50%most frequent passwords if we remove
the characters in the i-th position.

As we can see, even among a list notorious for containing many

bad passwords with lots of redundancy, removing two characters

only reduced the average number of hashes to compute by about

31% when setting the character position in advance — and dynam-

ically removing the best 2 characters would improve this by at

most a few percentage points. Even with efficient hardware, the

attack would be prohibitively costly. Moreover, a smart user inter-

face could compute the key stretching before the user submits the

password, recomputing from scratch each time a new character is

typed. This can guarantee an additional 10ms of free key stretching

per hash without the user noticing.

We can now prove Lemma 2. We only consider users with pass-

words at least 10-characters long, as otherwise the proof is immedi-

ate due to the trivial typo correction.

Proof. The hashes are all computed with different salts, so

rainbow tables can’t help, and cracking a single user’s credentials

doesn’t help the attacker with the credentials of another user.

The data under each user is composed of the same number of

hashes and corresponding numbers, except for the users with in-

creased security, and the transcripts are also structurally identical,

so finding the users with passwords of lower lengths is as easy as

finding out that the last characters of those passwords are made of

padding. Knowing that they are made of padding requires know-

ing that they are the image of a non-existent character, which is

equivalent to finding that they are the image of a given character.

However, finding whether the number stored corresponds to a

given character through bruteforce is not easier than finding the

password itself, as a large set of passwords with different characters

in its stead will yield the correct number. If the actual password

wasn’t in the set tested, the adversary can’t guess the extracted

character with probability much bigger than uniform, whereas if

the correct password was in the set the adversary already knows a

correct hash.

As the preimages under the hashing functions considered are

much harder to compute than bruteforcing from the password

side, and as the additional numbers give no information unless the

adversary knows the rest of the password, the only viable generic

attack goes through bruteforcing from the password side.

An adversary can then consider one position, ignore the two let-

ters concerned, and bruteforce all the others. In a best case scenario,

this method could remove close to 14 bits of entropy, or improve

by a factor 15000 the speed of the bruteforce. However, using NIST

estimates [14], at best 4 bits of entropy would be lost, correspond-

ing to a factor 16 speedup — much higher than the 45% speedup

observed on the data.

□

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard

4 ALTERNATIVE ALGORITHM BASED ON
THE DISCRETE LOGARITHM AND LOWER
BOUNDS

Although the algorithms shown previously should be sufficient

for practical applications, it is worth wondering whether better

solutions could exist, at least from a theoretical standpoint. Taking

inspiration from homomorphic encryption, can we safely compute

some forms of edit distances between two strings on encrypted

data? The techniques involved here are related to fuzzy extrac-

tors [21], which have been used to tolerate errors in biometric

authentication systems without revealing information [12].

4.1 Impossibility results and lower bounds
The following trivial lemma poses a first obstacle to the existence

of such frameworks:

Lemma 3 (Folklore). Let A be an n-character string on an al-
phabet of sizem. Knowing n and having access to an oracle that can
compute the Hamming distance between A and B for any n-character
string B, one can find A in O(m × n) queries to the oracle.

Proof. By taking any B as an initial string and iteratively chang-

ing one character repeatedly until the oracle indicates a lower dis-

tance before moving to the next character, we can converge to the

correct A in at mostm × n queries. □

Remark 4. The bound ofO(m×n) can be reduced toO((m+n) logm)
by cutting the string into bits of size < m, finding which letters are

present in each substring and getting their positions by dichotomy.

Lemma 3 is but a first obstacle, as this reasoning applies to other

metrics, shown in the following lemma and its corollaries. Let F be

a set of operations that take a single string, a set of indices in that

string, and a set of characters in an alphabet of sizem and return

a string. Let F be such that for any operation that can transform

A into B, there is a symmetric
11

operation transforming B into A.
Let the F -edit distance d between two strings be defined as the

minimal number of operations from F required to transform one

into the other.

Lemma 4. Let A be an n-character string on an alphabet of size
m. Knowing n and having access to an oracle that can compute the
F -edit distance between A and B for any n-character string B, one
can findA inO(D×(max(m,n)k)) queries to the oracle, where k is the
maximum arity of operations in F , and D is the maximum F -edit
distance between two strings of length n.

Proof. As before, we start with an arbitrary string B and query

its distance to the target. We then run each possible operation in F

on all possible operands, querying the oracle with each result. As

there are at most (max(m,n)k) operand combinations, and at least

one of them reduces d(A,B), we need at mostO(D × (max(m,n)k))
queries to find A. □

Corollary 1. Finding A without n takes at most O(m + n logn)
queries with an oracle for the Levenshtein distance, O(n(max(m,n)))
for Damerau-Levenshtein [19], and O(n4) for Kendall’s tau [32].
11
Through the definition, we have the properties of non-negativity, identity of indis-

cernibles and subadditivity, thus we only need to add symmetry to get a metric.

Proof. The second and third assertions are obtained by direct

application of the previous lemma, but we need details for the first.

We can start by obtainingn inO(n) queries (for any of the consid-
ered distance and including when only queries of at least a minimal

size are accepted). Starting with the smallest query size, we increase

the query at each step while keeping all the letters equal to any

constant letter. The distance stays constant or decreases before

eventually increasing — corresponding to a deletion — at which

point n is equal to the current length minus one.

Once we have n, we can find how many occurrences of each

letter we have by querying words composed of a single repeated

letter, which takes O(m) queries. In O(n) queries we can get the

exact location of all occurrences of one given letter (by putting it

successively in each position). Using this letter as a background,

we can do a dichotomic search for the positions of each remaining

letter, which takes O(logn) queries per letter, or O(n logn) total.
□

Corollary 1 also holds when the answer given by the oracle is

imprecise. For example, instead of computing the exact distance, it

could indicate f (d(A,B)), for a function f like f (x) =
⌈ x
4

⌉
.

Corollary 2. Let f be a non-decreasing function, and let

D = maxd(A,B)
B, |B | ≤ |A |

and p = max(i − j)
i, j<D,f (i)=f (j)

If the oracle answers queries by returning f (d(A,B)), finding A takes
at most O(D × (max(m,n)k)p) queries.

Proof. Following the proof of Lemma 4, we can try all sequences

of at most i F -operations, for 1 ≤ i ≤ p. This requires at most

(max(m,n)k)p) each time, and has to be done at most D times. □

Corollary 3. For a given A and B, let the oracle have a prob-
abilistic outcome which follows a distribution with values in [0,T]
and with expectation d(A,B). There is a probabilistic algorithm that
computes A with probability Ω(1

2
) with a number of queries at most

O(D × (max(m,n)k) × k × ln(D ×max(m,n)) × 2T 2).

Proof. The proof follows that of Lemma 4, except that instead

of querying for a single value from the oracle, we make 2kT 2 ×

ln(4D × max(m,n)) queries and take the integer closest to the

mean. By Hoeffding’s inequality [26], we have a probability at

most
1

2D×(max(m,n)k)
of getting a wrong value for the distance. Us-

ing the union bound [27], the probability of getting at least one

distance wrong is at most
1

2
. Thus, with probability Ω(1

2
), all the

distances are accurate and the correct string is computed. □

The proofs of those corollaries can also be combined to prove

that the lemma holds even against an oracle that answers a proba-

bilistic approximation of a function of the distance. We can then see

that any simple system that allows computation of an edit distance

between a secret string and arbitrary queried strings can be used

to find the original secret string in a polynomial number of queries.

Any method that seeks to prevent the discovery of the secret string

must then be able to overcome this, for example — as is done here-

after — by having variable costs for queries. Proposition 1 in the

Appendix also shows the space-optimality of the last framework

we will now introduce.

Secure and Efficient Password Typo Tolerance Conference’17, July 2017, Washington, DC, USA

4.2 Discrete logarithm method
Before the algorithm, we must first introduce a distance between

strings which, although simple, is not generally used. Let’s consider

a keyboard, with a standard QWERTY layout. The 48 main keys

of the keyboard and the different characters they can create can

easily be modelled by a 3-dimensional coordinate system. The first

dimension corresponds to the horizontal position of the key (or the

row), the second dimension to the vertical (the diagonal column),

and the third dimension to the modifiers, here only considering

Shift although it could easily be extended. This forms a subset of a

14 × 4 × 2 lattice12.

Definition 1. Let s be a string of lengthn. The string coordinates of
s are defined as the sequences (xi)1≤i≤n ,(yi)1≤i≤n and (zi)1≤i≤n ,
where (xi ,yi , zi) are the coordinates of the i-th letter in the previous
coordinate system.

Definition 2. Let s and s ′ be strings of identical length n. Let the
keyboard distance between s and s ′ be defined as the L1-distance
between their string coordinates, that is,

d(s, s ′) =
∑

1≤i≤n

(��xi − x ′i �� + ��zi − z′i �� + ��zi − z′i ��)
By this definition, the distance between homomorphic and homi-

morphic is 1, but the distance between homomorphic and Bomomor-
phic is 3, the same as the distance between homomorphic and homo-
mor;jkc. The expected distance between two random n-character
strings is then

59707

10296
× n, or about 58 for 10-character keymashes.

Definition 3. Let s be a string of lengthn, and let (xi)1≤i≤n ,(yi)1≤i≤n
and (zi)1≤i≤n be its string coordinates. Let pi be the i-th prime

number. We define the integral representation X (s) of s as

X (s) =
∏

1≤i≤n
pxii × p

yi
i+n × p

zi
i+2n

Remark 5. Alternatively, we could have used a more intuitive def-

inition, with X (s) =
∏

1≤i≤n p
xi
3i−2 × p

yi
3i−1 × p

zi
3i . This means that

strings that include others as prefixes have integral representations

that are multiples of the prefixes’ integral representations. As we

only consider strings of constant length, this leads to higher values

ofX (s)with no real advantage. On a standard keyboard, for a string

s of length 10, X (s) < 2
966

with the second definition whereas

X (s) < 2
768

with the first (and X (s) < 2
853

for length 12). In all

cases, they are in expectation quite above 2
250

, which is enough to

prevent discrete logarithm attacks on small exponents [24].

With the coordinate system, the associated distance and an in-

tegral representation, we can now define the key-setting and the

typo-checking algorithms, inspired by the Diffie-Helman key ex-

change. Intuitively, we take a random element in a group and put it

to the X-th power, where X is dependent on the password. Because

of the function’s structure, it is easy to compare the elements cor-

responding to two closely related strings. The security lies in the

assumed hardness of computing the discrete logarithm.

Here, the key-setting and key-sending algorithm are identical:

the stored key is exactly the one that is sent the first time the client

creates the password.

12
One could also add the space key, in which case the following proofs still work

although with a slightly different structure. Similarly, adding the Alt key would only

make it a 4-dimensional coordinate system.

Remark 6. As before, the PRNG in the algorithm could be a deriv-

ative of Keccak but we do not not require a high level of security

here. Any algorithm to get an element from a set of pseudorandom

bits — such as a PCG one [40] — would be appropriate.

Data: Username string U , Salt string S , Password string P

Group G , Pseudorandom number generator f
Result: An element д0 ∈ G corresponding to the "hashed"

password, that is sent to the server

1 begin
2 Compute the string coordinates (xi , yi , zi)1≤i≤|P | of P
3 X ←−

∏
1≤i≤n p

xi
i × p

yi
i+n × p

zi
i+2n

4 N ←− f (U + S)
5 Let g be a pseudorandom element д of G computed from N
6 Transfer дX to the server

Algorithm 4: Key-setting/sending discrete logarithm algo-

rithm

Data: Group G , constant D , maximum length n
Stored element д0 ∈ G , received element д1 ∈ G
Result: Keyboard distance between the passwords if it’s less than

D .

1 begin
2 for i from 1 to D do
3 for j from 0 to i do
4 L0 ←− [], L1 ←− []
5 foreach 1 ≤ a1 ≤ a2 ≤ ... ≤ aj ≤ 3n do
6 X0 ←−

∏
ak pak

7 L0 ←− Concatenate(L0, д0X0)

8 foreach 1 ≤ b1 ≤ b2 ≤ ... ≤ bi−j ≤ 3n do
9 X1 ←−

∏
bk pbk

10 L1 ←− Concatenate(L1, д1X1)

11 foreach д′ ∈ L0 do
12 if д′ ∈ L1 then return i
13 return REJECT

Algorithm 5: Distance-checking discrete logarithm algo-

rithm

Remark 7. The reason why we compute two lists of elements is

that computing errors where ai is greater than expected is easy,

as дXpi = (дX)pi . Computing errors the other way around is actu-

ally akin to computing a discrete logarithm in the group. As such,

the distance computation in this algorithm always goes from the

"smaller" to the "bigger" password, which can thankfully be mixed

when the keyboard distance is greater than 1.

The comparison on lines 14-16 is not optimal, but it is simple

and should not affect the running time as the main factor is the

computation of the powers of the elements in G.

4.3 Security and performance
The security of this algorithm directly comes from the discrete

logarithm assumption: computing P from д0 corresponds exactly to
solving the discrete logarithm with the promise that the solution

is a 3n-smooth number — for potentially high n in case of added

padding. To implement it in practice, one would have to be careful

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard

to choose an appropriate group [1]. A cyclic group of order p with p
a 2048-bit prime should be sufficient against current computational

capabilities. A similar algorithm could be adapted to elliptic curves.

With this framework, the login queries are all of the same format:

a single element of the group. In a way, as shown in Proposition 1

in the Appendix, this could lead to a proof of optimality in terms

of space and communication bits required, depending on the group

used in practice. It also means that faking an id is is not easier

than the hardest typo-tolerant framework that accepts the same

typos. As the size of the group is much greater than the general

password space, the discrete logarithm assumption also implies

that bruteforcing the password is once again the best avenue of

attack. As previously, this can be slightly optimised by not trying

passwords that are close to each other.

Besides the fact that it only allows the correction of substitution

errors, the main downside of this algorithm is the time needed

to compute the distance. This is still acceptable on the client side,

where the main hurdle is squaring an element at most 1600 times

in a large group. Using efficient libraries, this can be done in less

than 10ms. However, the server-side computation is where the cost

becomes prohibitive. For strings of length 12, checking whether

they are at distance 1 takes at most 72 exponentiation operations, or

less than 500 squaring operations, doable in a few ms. At distance

2, computation already takes 35 times more operations, which is

on the edge of noticeable from the client-side. Checking whether

they are at distance 3 (probably the highest reasonable distance

for typos) is, alas, prohibitive, taking at least a few seconds. Using

the trinomial revision, the number of expected exponentiations at

distance D ≤ n is on average

1

2

D∑
i=0

((
3n

i

) (
3n − i

D − i

))
= 2

D−1 ×

D∑
i=0

(
3n

D

)
≥

1

2

(
6n

D

)D
This illustrates why the method is not concerned by the lower

bounds shown previously: although a linear number of queries

might be enough to find the original string from the computed

distances, most of those couldn’t be computed because of the expo-

nential cost.

Remark 8. There is, in fact, one potential risk that requires in-

vestigating with this method. The discrete logarithm assumption

concerns normal elements of the group. However, the elements

considered here are not random elements but X-th powers, with

B-smooth X, for 101 ≤ B ≤ 181. Although B-smooth numbers are

essential in discrete logarithm problems [43], this does not seem to

be a situation where X being B-smooth is an issue.

5 CONCLUSION
The main contribution of this paper is a set of frameworks that can

be combined in a complete system with the following properties:

• It corrects 57.7% of all typos, or 91.2% of legitimate typos.

• It stores 32 hashes and 90 integers on the server. Using lazy

evaluation — only checking the remaining hashes when the

main one is incorrect — this does not require any extra com-

putation on the server’s side.

• It requires no additional waiting time for computation on the

user side, as it can run between the moment the user presses

the last key and the moment they submit the password.

• It creates little extra communication cost as the additional

data can still fit in an average packet (420 bytes for the num-

bers, 544 bytes for the hashes), well below the IPv6 MTU [20].

• Assuming optimised code that runs on specialised hardware

15× faster than an average client’s browser’s hashing ability,

bruteforcing a single password from the database still takes

more than a year
13
.

• Faking a correct authentication message is at best 114 times

more efficient than normal bruteforce, but this can be com-

pensated or eliminated by having stricter constraints on the

number and frequency of queries while still having a positive

impact on usability.

When compared to TypTop, the best typo-correction system

today
14
, it has greater usability — correcting about twice as many

typos — and lowered computing requirements, at the cost of an

increased storage and slightly lowered security guarantees.

Multiple practical improvements could still be added to the sys-

tem considered. For example, as the system can detect typos, it

might be interesting to let the user know when they’ve made one

(although this might lower usability). Looking in another direction,

it would be possible to associate given (hash / number) pairs with

frequencies and allow typos probabilistically, with the system being

more forgiving when the typo is repeated.

Combining both approaches, if a typo happens with great fre-

quency, it would be possible for the system to ask if the user wants

to make that their new password. It would also be possible to use

some secret sharing system to combine the different hashes and

simplify the computations, but this seems to require a challenge

system with at least two rounds of communication.

Naturally the schemes proposed depend on the service providers’

will to implement them. Thankfully, we can easily address this.

Switching from a system where passwords are simply hashed re-

quires two things to be changed: the database must be transformed,

and the client’s code must also be made to compute the new kinds

of hashes. The first part is relatively simple and can be done by

adding an extra column that points to the new complete hashing

information and is accessed only when the main hash is not correct.

Each time a user correctly logs in, the database uses the occasion to

add the relevant data (which is sure to be correct as the main hash

matches). This allows the service provider to maintain compatibility

with a legacy system and lazily upgrade the security of all users.

The client’s code must also be transformed so that it transfers

not just the main hash but all the necessary information. This can

be done without requiring redeployment or updating clients when

considering web services. Indeed, the service provider is also the

one providing the Javascript code for the web page, and can update

this centrally without directly implicating the users.

An important change is that hashes are computed on the client’s

side, but there are nowadays next to no reason to compute them

on the server’s side — unlike two decades ago when they could be

necessary to assure compatibility with legacy systems.

13
This assumes that the client interface runs fast hashing algorithms, for example, in a

WebAssembly or PNaCl environment, which can have a 20× speedup over asm.js [2,

22, 46].

14
This title of best is easily attributed as the only competitors — to our knowledge —

are previous systems by the same authors.

Secure and Efficient Password Typo Tolerance Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,

Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel

Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-

Béguelin, and Paul Zimmermann. 2015. Imperfect Forward Secrecy: How Diffie-

Hellman Fails in Practice. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS ’15). ACM, New York, NY, USA,

5–17. https://doi.org/10.1145/2810103.2813707

[2] Antelle. 2018. Argon2 in browser. https://web.archive.org/web/20180119222301/

http://antelle.net/argon2-browser/

[3] Axel Bacher, Olivier Bodini, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. 2017. Gener-

ating Random Permutations by Coin Tossing: Classical Algorithms, NewAnalysis,

and Modern Implementation. ACM Transactions on Algorithms – TALG 13, 2

(2017), 24.

[4] G. C. Batista, C. C. Miers, G. P. Koslovski, M. A. Pillon, N. M. Gonzalez, and

M. A. Simplicio. 2018. Using Externals IdPs on OpenStack: A Security Analysis of

OpenID Connect, Facebook Connect, and OpenStack Authentication. In IEEE 32nd
International Conference on Advanced Information Networking and Applications –
AINA, Vol. 00. 920–927. https://doi.org/10.1109/AINA.2018.00135

[5] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. 2008.

On the indifferentiability of the sponge construction. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
181–197.

[6] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2016. Argon2: new gen-

eration of memory-hard functions for password hashing and other applications.

In IEEE European Symposium on Security and Privacy – EuroS&P. IEEE, 292–302.
[7] Paul E. Black. 2005. Fisher-yates shuffle. Dictionary of algorithms and data

structures 19 (2005).
[8] Manuel Blum and Santosh Srinivas Vempala. 2015. Publishable humanly usable se-

cure password creation schemas.. In 3rd AAAI Conference on Human Computation
and Crowdsourcing.

[9] J. Bonneau. 2012. The Science of Guessing: Analyzing an Anonymized Corpus

of 70 Million Passwords. In IEEE Symposium on Security and Privacy. 538–552.
https://doi.org/10.1109/SP.2012.49

[10] Joseph Bonneau and Ekaterina Shutova. 2012. Linguistic properties of multi-

word passphrases. In International Conference on Financial Cryptography and
Data Security. Springer, 1–12.

[11] Gilles Brassard and Sampath Kannan. 1988. The Generation of Random Per-

mutations on the Fly. Inform. Process. Lett. 28, 4 (July 1988), 207–212. https:

//doi.org/10.1016/0020-0190(88)90210-4

[12] J. Bringer, H. Chabanne, and Q. Tang. 2007. An Application of the Naccache-Stern

Knapsack Cryptosystem to Biometric Authentication. In 2007 IEEE Workshop
on Automatic Identification Advanced Technologies. 180–185. https://doi.org/10.

1109/AUTOID.2007.380616

[13] Sacha Brostoff and M. Angela Sasse. 2000. Are Passfaces More Usable Than

Passwords? A Field Trial Investigation. In People and Computers XIV —Usability or
Else!: Proceedings of HCI, Sharon McDonald, Yvonne Waern, and Gilbert Cockton

(Eds.). Springer London, London, 405–424. https://doi.org/10.1007/978-1-4471-

0515-2_27

[14] William E. Burr, Donna F. Dodson, and Timothy W. Polk. 2004. Nist special

publication 800-63-2. Electronic Authentication Guideline 1 (2004).
[15] Centrify. 2014. Centrify Password Survey: Summary. Technical Report. Cen-

trify. https://www.centrify.com/resources/5778-centrify-password-survey-

summary/ Accessed: 2017-12-20.

[16] Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels, and Thomas

Ristenpart. 2016. pASSWORD tYPOS and how to correct them securely. In IEEE
Symposium on Security and Privacy. IEEE, 799–818.

[17] Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha Chowdhury, and

Thomas Ristenpart. 2017. The TypTop System: Personalized Typo-Tolerant Pass-

word Checking. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17). ACM, New York, NY, USA, 329–346.

https://doi.org/10.1145/3133956.3134000

[18] Lorrie Faith Cranor. 2016. Time to rethink mandatory password changes.

https://web.archive.org/web/20190302102425/https://www.ftc.gov/news-

events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes

[19] Fred J. Damerau. 1964. A technique for computer detection and correction of

spelling errors. Commun. ACM 7, 3 (1964), 171–176.

[20] S. Deering and R. Hinden. 2014. RFC 2460-Internet Protocol, Version 6 (IPv6)

Specification, 1998. http://www.ietf.org/rfc/rfc2460.txt

[21] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. 2008. Fuzzy Extrac-

tors: How to Generate Strong Keys from Biometrics and Other Noisy Data.

SIAM J. Comput. 38, 1 (2008), 97–139. https://doi.org/10.1137/060651380

arXiv:https://doi.org/10.1137/060651380

[22] Alan Donovan, Robert Muth, Brad Chen, and David Sehr. 2010. Pnacl: Portable

native client executables. Google White Paper (2010).
[23] Seena Gressin. 2017. The Equifax Data Breach: What to Do. https://web.archive.

org/web/20190304122541/https://www.consumer.ftc.gov/blog/2017/09/equifax-

data-breach-what-do

[24] Aurore Guillevic and François Morain. 2016. Discrete Logarithms. In Guide to
pairing-based cryptography, Nadia El Mrabet and Marc Joye (Eds.). CRC Press -

Taylor and Francis Group, 42. https://hal.inria.fr/hal-01420485

[25] Ben Herzog and Yaniv Balmas. 2016. Great Crypto Failures. In Virus Bulletin
Conference (2016-10-01).

[26] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random

Variables. J. Amer. Statist. Assoc. 58, 301 (3 1963), 13–30. http://www.jstor.org/

stable/2282952?

[27] David Hunter. 1976. An upper bound for the probability of a union. Journal of
Applied Probability 13, 3 (1976), 597–603. https://doi.org/10.2307/3212481

[28] Brent Jensen. 2013. 5 Myths of Password Security. https://web.archive.org/web/

20180528052512/https://stormpath.com/blog/5-myths-password-security Ac-

cessed: 2017-12-18.

[29] B. Kaliski. 2000. PKCS# 5: Password-Based Cryptography Specification Version 2.0.
Technical Report. RFC Editor.

[30] Mark Keith, Benjamin Shao, and Paul John Steinbart. 2007. The usability of

passphrases for authentication: An empirical field study. International journal of
human-computer studies 65, 1 (2007), 17–28.

[31] Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Richard Shay,

Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio Lopez.

2012. Guess again (and again and again): Measuring password strength by

simulating password-cracking algorithms. In IEEE Symposium on Security and
Privacy. IEEE, 523–537.

[32] Maurice G. Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2
(1938), 81–93.

[33] Patrick Lambert. 2012. The case of case-insensitive passwords. https:

//web.archive.org/web/20190310221858/https://www.zdnet.com/article/the-

case-of-case-insensitive-passwords/

[34] Micah Lee. 2015. Passphrases that you can memorize – but that even the NSA

can’t guess. https://web.archive.org/web/20180115133823/https://theintercept.

com/2015/03/26/passphrases-can-memorize-attackers-cant-guess/

[35] Peter Lipa. 2016. The Security Risks of Using "Forgot My Password" to

Manage Passwords. https://web.archive.org/web/20170802185615/https:

//www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-

password-to-manage-passwords/ Accessed: 2017-12-18.

[36] W. Ma, J. Campbell, D. Tran, and D. Kleeman. 2010. Password Entropy and

Password Quality. In 4th International Conference on Network and System Security.
583–587. https://doi.org/10.1109/NSS.2010.18

[37] Jim Marquardson. 2012. Password Policy Effects on Entropy and Recall: Research

in Progress. In Americas Conference on Information Systems.
[38] William Melicher, Darya Kurilova, Sean M. Segreti, Pranshu Kalvani, Richard

Shay, Blase Ur, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Michelle L.

Mazurek. 2016. Usability and Security of Text Passwords on Mobile Devices. In

Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 527–539. https://doi.org/10.1145/2858036.

2858384

[39] Nasir Memon. 2017. How biometric authentication poses new challenges to our

security and privacy [in the spotlight]. IEEE Signal Processing Magazine 34, 4
(2017), 196–194.

[40] Melissa E. O’Neill. 2014. PCG: A family of simple fast space-efficient statistically

good algorithms for random number generation. ACM Trans. Math. Software
(2014).

[41] Denise Ranghetti Pilar, Antonio Jaeger, Carlos F. A. Gomes, and Lilian Milnitsky

Stein. 2012. Passwords Usage and Human Memory Limitations: A Survey across

Age and Educational Background. PLoS One 7, 12 (05 12 2012). https://doi.org/

10.1371/journal.pone.0051067 PONE-D-12-21406[PII].

[42] Melanie Pinola. 2014. Your Clever Password Tricks Aren’t Protecting You from

Today’s Hackers. https://web.archive.org/web/20190203093823/https://lifehacker.

com/your-clever-password-tricks-arent-protecting-you-from-t-5937303

[43] Carl Pomerance. 1994. The role of smooth numbers in number theoretic algo-

rithms. In International Congress of Mathematicians. Citeseer.
[44] Ponemon Institute. 2017. The Cost of Credential Stuffing. Technical Report.

Ponemon Institute.

[45] Emil Protalinski. 2011. Facebook passwords are not case sensitive.

https://web.archive.org/web/20180422141217/https://www.zdnet.com/article/

facebook-passwords-are-not-case-sensitive-update/

[46] Andreas Rossberg. 2016. WebAssembly: high speed at low cost for everyone. In

ML16: Proceedings of the 2016 ACM SIGPLAN Workshop on ML.
[47] Sean M. Segreti, William Melicher, Saranga Komanduri, Darya Melicher, Richard

Shay, Blase Ur, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Michelle L.

Mazurek. 2017. Diversify to Survive: Making Passwords Stronger with Adaptive

Policies. In 13th Symposium on Usable Privacy and Security – SOUPS. USENIX As-

sociation, Santa Clara, CA, 1–12. https://www.usenix.org/conference/soups2017/

technical-sessions/presentation/segreti

[48] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh,

Michelle L. Mazurek, Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and

https://doi.org/10.1145/2810103.2813707
https://web.archive.org/web/20180119222301/http://antelle.net/argon2-browser/
https://web.archive.org/web/20180119222301/http://antelle.net/argon2-browser/
https://doi.org/10.1109/AINA.2018.00135
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1016/0020-0190(88)90210-4
https://doi.org/10.1016/0020-0190(88)90210-4
https://doi.org/10.1109/AUTOID.2007.380616
https://doi.org/10.1109/AUTOID.2007.380616
https://doi.org/10.1007/978-1-4471-0515-2_27
https://doi.org/10.1007/978-1-4471-0515-2_27
https://www.centrify.com/resources/5778-centrify-password-survey-summary/
https://www.centrify.com/resources/5778-centrify-password-survey-summary/
https://doi.org/10.1145/3133956.3134000
https://web.archive.org/web/20190302102425/https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes
https://web.archive.org/web/20190302102425/https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes
http://www.ietf.org/rfc/rfc2460.txt
https://doi.org/10.1137/060651380
http://arxiv.org/abs/https://doi.org/10.1137/060651380
https://web.archive.org/web/20190304122541/https://www.consumer.ftc.gov/blog/2017/09/equifax-data-breach-what-do
https://web.archive.org/web/20190304122541/https://www.consumer.ftc.gov/blog/2017/09/equifax-data-breach-what-do
https://web.archive.org/web/20190304122541/https://www.consumer.ftc.gov/blog/2017/09/equifax-data-breach-what-do
https://hal.inria.fr/hal-01420485
http://www.jstor.org/stable/2282952?
http://www.jstor.org/stable/2282952?
https://doi.org/10.2307/3212481
https://web.archive.org/web/20180528052512/https://stormpath.com/blog/5-myths-password-security
https://web.archive.org/web/20180528052512/https://stormpath.com/blog/5-myths-password-security
https://web.archive.org/web/20190310221858/https://www.zdnet.com/article/the-case-of-case-insensitive-passwords/
https://web.archive.org/web/20190310221858/https://www.zdnet.com/article/the-case-of-case-insensitive-passwords/
https://web.archive.org/web/20190310221858/https://www.zdnet.com/article/the-case-of-case-insensitive-passwords/
https://web.archive.org/web/20180115133823/https://theintercept.com/2015/03/26/passphrases-can-memorize-attackers-cant-guess/
https://web.archive.org/web/20180115133823/https://theintercept.com/2015/03/26/passphrases-can-memorize-attackers-cant-guess/
https://web.archive.org/web/20170802185615/https://www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-password-to-manage-passwords/
https://web.archive.org/web/20170802185615/https://www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-password-to-manage-passwords/
https://web.archive.org/web/20170802185615/https://www.stickypassword.com/blog/the-security-risks-of-using-forgot-my-password-to-manage-passwords/
https://doi.org/10.1109/NSS.2010.18
https://doi.org/10.1145/2858036.2858384
https://doi.org/10.1145/2858036.2858384
https://doi.org/10.1371/journal.pone.0051067
https://doi.org/10.1371/journal.pone.0051067
https://web.archive.org/web/20190203093823/https://lifehacker.com/your-clever-password-tricks-arent-protecting-you-from-t-5937303
https://web.archive.org/web/20190203093823/https://lifehacker.com/your-clever-password-tricks-arent-protecting-you-from-t-5937303
https://web.archive.org/web/20180422141217/https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://web.archive.org/web/20180422141217/https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/segreti
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/segreti

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard

Lorrie Faith Cranor. 2014. Can Long Passwords Be Secure and Usable?. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14).
ACM, New York, NY, USA, 2927–2936. https://doi.org/10.1145/2556288.2557377

[49] Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Giovanni Leon,

Michelle L. Mazurek, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2010.

Encountering Stronger Password Requirements: User Attitudes and Behaviors. In

Proceedings of the 6th Symposium on Usable Privacy and Security (SOUPS ’10). ACM,

New York, NY, USA, Article 2, 20 pages. https://doi.org/10.1145/1837110.1837113

[50] Martijn Sprengers. 2011. GPU-based Password Cracking. Master’s thesis. Radboud

University Nijmegen.

[51] San-Tsai Sun and Konstantin Beznosov. 2012. The Devil is in the (Implementation)

Details: An Empirical Analysis of OAuth SSO Systems. In Proceedings of the 2012
ACM Conference on Computer and Communications Security (CCS ’12). ACM, New

York, NY, USA, 378–390. https://doi.org/10.1145/2382196.2382238

[52] Aaron Toponce. 2011. Strong Passwords NEED Entropy. https:

//web.archive.org/web/20180223215746/https://pthree.org/2011/03/07/strong-

passwords-need-entropy/ Accessed: 2017-12-18.

[53] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Segreti, Richard Shay, Lujo

Bauer, Nicolas Christin, and Lorrie F. Cranor. 2015. I added ’!’at the end to make

it secure”: Observing password creation in the lab. In Proceedings of the 11th
symposium on usable privacy and security.

[54] Ashlee Vance. 2010. If your password is 123456, just make it hackme.

https://web.archive.org/web/20181023160454/https://www.nytimes.com/2010/

01/21/technology/21password.html

[55] Rick Wash, Emilee Rader, Ruthie Berman, and Zac Wellmer. 2016. Understand-

ing Password Choices: How Frequently Entered Passwords Are Re-used across

Websites. In 12th Symposium on Usable Privacy and Security – SOUPS. USENIX As-

sociation, Denver, CO, 175–188. https://www.usenix.org/conference/soups2016/

technical-sessions/presentation/wash

[56] Joanne Woodage, Rahul Chatterjee, Yevgeniy Dodis, Ari Juels, and Thomas

Ristenpart. 2017. A New Distribution-Sensitive Secure Sketch and Popularity-

Proportional Hashing. In Advances in Cryptology – CRYPTO, Jonathan Katz and

Hovav Shacham (Eds.). Springer International Publishing, Cham, 682–710.

[57] Weining Yang, Ninghui Li, Omar Chowdhury, Aiping Xiong, and Robert W.

Proctor. 2016. An Empirical Study of Mnemonic Sentence-based Password Gener-

ation Strategies. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 1216–1229.

https://doi.org/10.1145/2976749.2978346

6 APPENDIX
We start by showing the pseudocode for the previous frameworks

before proving a lower bound for the last framework.

6.1 Transposition tolerance

Data: Salts S0, S1, ...S5, Password P of length n
Keyboard map M : Keys→ [0; 255]

Hash function HASH,

Pseudorandom number generator PRNG

Result: Main hash and list of n − 1 (hash / integer list) pairs

1 begin
2 H0 ←−HASH(Concatenate(S0, P))
3 for i from 1 to n − 1 do
4 Pi ←− P \ {P [i]

⋃
P [i + 1]}

5 Hi ←−HASH(Concatenate((S1, Pi)
6 for j from 1 to 4 do
7 Random_bits[j]←− PRNG(Concatenate(S2, Pi))
8 πi, j ←−Brassard(Random_bits[j])

9 KAi ←− [πi,1(M (P [i]))]
10 KBi ←− [πi,2(M (P [i + 1]))]
11 KCi ←− [πi,3(M (P [i]))]
12 KDi ←− [πi,4(M (P [i + 1]))]
13 return (H0, (Hi , KAi , KBi , KCi , KDi)1≤i≤n−1)

Algorithm 6: Key-setting transposition-tolerant algorithm

Data: Salts S0, S1, S2, Password P of length n
Keyboard map M : Keys→ [0; 255]

Hash function HASH

Pseudorandom number generator PRNG

Result: Set of n (hash / integer list) pairs

1 begin
2 H0 ←−HASH(Concatenate((S0, P))
3 for i from 1 to n − 1 do
4 Pi ←− P \ {P [i]

⋃
P [i + 1]}

5 Hi ←−HASH(S1 + Pi)
6 for j from 1 to 4 do
7 Random_bits←−PRNG(Concatenate(Sj+2, Pi))
8 πi, j ←− Brassard(Random_bits)

9 LAi ←− [πi,1(M (i))]
10 LAi .append(πi,1(M (SHIFT(P [i]))))
11 foreach a ∈ Neighbours(P [i]) do
12 LAi .append(πi,1(M (a))
13 LAi .sort()
14 LBi ←− [πi,2(M (i + 1))]
15 LBi .append(πi,2(M (SHIFT(P [i + 1]))))
16 foreach a ∈ Neighbours(P [i + 1]) do
17 LBi .append(πi,2(M (a))
18 LBi .sort()
19 LCi ←− [πi,3(M (P [i + 1]))]
20 LDi ←− [πi,4(M (P [i]))]
21 return (H0, (Hi , LAi , LBi , LCi , LDi)1≤i≤n−1)

Algorithm 7: Key-sending transposition-tolerant algorithm

Data: Length n, H0 Original list (Hi , KAi , KBi , KCi , KDi)

received hash H ′
0
and list (H ′i , LAi , LBi , LCi , LDi) of (hash /

integer lists) pairs

Result: ACCEPT if the password corresponds to the correct one or

a version with an acceptable typo.

1 begin
2 if H0 = H ′

0
then

3 return ACCEPT

4 else
5 for i from 1 to n − 1 do
6 if Hi = H ′i then
7 for j from 1 to |LAi | do
8 if LAi [j] = KAi AND LBi [1] = KBi then
9 return ACCEPT

10 for j from 1 to |LBi | do
11 if LBi [j] = KBi AND LAi [1] = KAi then
12 return ACCEPT

13 if LCi [1] = KCi AND LDi [1] = KDi then
14 return ACCEPT

15 return REJECT

Algorithm 8: Key-checking transposition-tolerant algo-

rithm

https://doi.org/10.1145/2556288.2557377
https://doi.org/10.1145/1837110.1837113
https://doi.org/10.1145/2382196.2382238
https://web.archive.org/web/20180223215746/https://pthree.org/2011/03/07/strong-passwords-need-entropy/
https://web.archive.org/web/20180223215746/https://pthree.org/2011/03/07/strong-passwords-need-entropy/
https://web.archive.org/web/20180223215746/https://pthree.org/2011/03/07/strong-passwords-need-entropy/
https://web.archive.org/web/20181023160454/https://www.nytimes.com/2010/01/21/technology/21password.html
https://web.archive.org/web/20181023160454/https://www.nytimes.com/2010/01/21/technology/21password.html
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash
https://doi.org/10.1145/2976749.2978346

Secure and Efficient Password Typo Tolerance Conference’17, July 2017, Washington, DC, USA

6.2 Insertion tolerance

Data: Salts S0, S1, ...S5, Password P of length n
Keyboard map M : Keys→ [0; 255]

Hash function HASH

Pseudorandom number generator PRNG

Result: Main hash and lists of (hash / integer) and (hash / integer

list) pairs

1 begin
2 H0 ←−HASH(Concatenate(S0, P))
3 for i from 1 to n do
4 PAi ←− P \ P [i] /* Removing the i-th letter from

the string */

5 HAi ←−HASH(Concatenate(S1, PAi))
6 Random_bits←− PRNG(Concatenate(S2, Pi))
7 πi ←− Brassard(Random_bits)

8 Ki ←− πi (M (P [i]))
9 for i from 1 to n − 1 do
10 PBi ←− P \ {P [i]

⋃
P [i + 1]}

11 HBi ←−HASH(Concatenate(S1, PBi))
12 for j from 1 to 4 do
13 Random_bits[j]←− PRNG(Concatenate(S2, Pi))
14 πi, j ←−Brassard(Random_bits[j])

15 KAi ←− [πi,1(M (P [i]))]
16 KBi ←− [πi,2(M (P [i + 1]))]
17 KCi ←− [πi,3(M (P [i]))]
18 KDi ←− [πi,4(M (P [i + 1]))]
19 return

(H0, (HAi , Ki)1≤i≤n, (HBi , KAi , KBi , KCi , KDi)1≤i≤n−1)

Algorithm 9: Key-setting insertion-tolerant algorithm

Data: Length n, Original hash H0, Original list (HAi , Ki)
Original list (HBi , KAi , KBi , KCi , KDi)

Received hash H ′
0
and list (H ′i , LAi , LBi , LCi , LDi)

Result: ACCEPT if and only if the password has at most one

acceptable typo.

1 begin
2 if H0 = H ′

0
then

3 return ACCEPT

4 else
5 for i from 1 to n − 1 do
6 if HBi = H ′i then
7 for j from 1 to |LAi | do
8 if (LAi [j] = KAi AND LBi [1] = KBi) OR
9 (LBi [j] = KBi AND LAi [1] = KAi) then
10 return ACCEPT

11 if LCi [1] = KCi AND LDi [1] = KDi then
12 return ACCEPT

13 else
14 if HAi = H ′i AND LBi [2] = KBi then
15 return ACCEPT

16 if HAn = H ′n AND LBn [2] = KBn then
17 return ACCEPT

18 return REJECT

Algorithm 10: Key-checking insertion-tolerant algorithm

6.3 Complete framework

Data: Username NAME , Password P of length n
Keyboard map M : Keys→ [0; 255]

Result: Main hash and lists of (hash / integer) and (hash / integer

list) pairs

1 begin
2 S [0] ←−SHA3-256(NAME)
3 for i from 1 to 5 do
4 S [i] ←−SHA3-256(S [i − 1])
5 H0 ←−Argon2(Concatenate(S [0], P))
6 if n < 10 then
7 return H0 /* Preventing general typo correction

on very short passwords. */

8 else
9 while Length (P) ≥ 16 do
10 P .append(S[0][0]) /* Making the passwords have

uniform minimum length of 16. */

11 for i from 1 to n do
12 PAi ←− P \ P [i]
13 HAi ←−Argon2(Concatenate(S [1], PAi))
14 Random_bits←− SHA3-256(Concatenate(S [2], Pi)
15 πi ←− Brassard(Random_bits)

16 Ki ←− πi (M (P [i]))
17 for i from 1 to n − 1 do
18 PBi ←− P \ {P [i]

⋃
P [i + 1]}

19 HBi ←−Argon2(Concatenate(S [1], PBi))
20 for j from 1 to 4 do
21 Random_bits[j]←−

SHA3-256(Concatenate(S [j + 1], Pi))
22 πi, j ←−Brassard(Random_bits[j])

23 KAi ←− [πi,1(M (P [i]))]
24 KBi ←− [πi,2(M (P [i + 1]))]
25 KCi ←− [πi,3(M (P [i]))]
26 KDi ←− [πi,4(M (P [i + 1]))]
27 return

(H0, (HAi , Ki)1≤i≤n, (HBi , KAi , KBi , KCi , KDi)1≤i≤n−1)

Algorithm 11: Key-setting complete algorithm

Conference’17, July 2017, Washington, DC, USA Nikola K. Blanchard

Data: Username NAME , Password P of length n, Keyboard map

M : Keys→ [0; 255]

Result: Two main hashes and list of (hash / integer list) pairs

1 begin
2 S [0] ←−SHA3-256(NAME)
3 for i from 1 to 5 do
4 S [i] ←−SHA3-256(S [i − 1])
5 P ′ ←−Invert_caps_lock(P)
6 H0 ←−Argon2(Concatenate(S [0], P))
7 H ′

0
←−Argon2(Concatenate(S [0], P ′))

8 if n < 10 then
9 return (H0, H ′

0
) /* Only sending caps lock typo

correction on very short passwords. */

10 else
11 while |P | < 16 do
12 P.append(S[0][0])

13 for i from 1 to n − 1 do
14 while |Neighbours(P [i]) | < MAX_NEIGHBOURS do
15 Neighbours(P [i]) ←− any k with

k > maxl (M (l)) /* Making the
neighbours lists have uniform length
by adding dummy characters. This also
concerns the padding characters from
line 12. */

16 for i from 1 to n − 1 do
17 Pi ←− P \ {P [i]

⋃
P [i + 1]}

18 Hi ←−Argon2(Concatenate(S [1], Pi))
19 for j from 1 to 4 do
20 Random_bits[j]

←−SHA3-256(Concatenate(Hi + S [j + 1]))
21 πi, j ←−Brassard(Random_bits[j])

22 LAi ←− [πi,1(M (i)), πi,1(M (SH I FT (P [i])))]
23 foreach j ∈ Neighbours(P [i]) do
24 LAi .append(πi,1(M (j))
25 LAi .sort()
26 LBi ←− [πi,2(M (i + 1)), πi,2(M (SH I FT (P [i + 1])))]
27 foreach j ∈ Neighbours(P [i + 1]) do
28 LBi .append(πi,2(M (j))
29 LBi .sort()
30 LCi ←− [πi,3(M (P [i + 1]))]
31 LDi ←− [πi,4(M (P [i]))]
32 return (H0, H ′

0
, (Hi , LAi , LBi , LCi , LDi)1≤i≤n−1)

Algorithm 12: Key-sending complete algorithm

Data: Length n, Original hash H , Original list (HAi , Ki)
Original list (HBi , KAi , KBi , KCi , KDi)

Received hashes H0 and H ′
0
and list (H ′i , LAi , LBi , LCi , LDi)

Result: ACCEPT if and only if the password has at most one

acceptable typo.

1 begin
2 if H = H0 OR H = H ′

0
then

3 return ACCEPT

4 else
5 if n < 10 then
6 WAIT(RANDOM(0.1-1))/* in ms, against timing

attacks */

7 return REJECT

8 else
9 for i from 1 to n − 1 do
10 if HBi = H ′i then
11 for j from 1 to |LAi | do
12 if (LAi [j] = KAi AND LBi [1] = KBi)

OR

13 (LBi [j] = KBi AND LAi [1] = KAi)
then

14 return ACCEPT

15 if LCi [1] = KCi AND LDi [1] = KDi then
16 return ACCEPT

17 else
18 if HAi = H ′i AND LBi [2] = KBi then
19 return ACCEPT

20 if HAn = H ′n AND LBn [2] = KBn then
21 return ACCEPT

22 WAIT(RANDOM(0.1-1))

23 return REJECT

Algorithm 13: Key-checking complete algorithm

6.4 Lower bound for the storage
Proposition 1. Let f be a function from {0, 1}∗ to {0, 1}n , such

that finding x from f (x) takes in expectation Ω(2α×n) operations,
with α > 0 . Let there be a three-party system where the first party has
a secret A, and the second party must check whether the third knows
A or A′ with d(A,A′) ≤ E for a given distance d and a constant E.
Let’s also assume that the second party receives a single message from
the first, followed by a single message from the second before deciding.
Then for any deterministic algorithm that guarantees that a good
message gets accepted with probability 1, that a random message has
probability O(n × 2−n) of getting accepted, and that finding A takes
Ω(2α×n) operations, the second party must store at least n −д(n) bits,
and the third must send at least n − д(n) bits, where д(n) ∈ o(n).

Proof. Let us suppose that there exists д(n) ≥ C × n for a con-

stantC such that a protocol satisfying the assumptions exists, which

requires sending only n −д(n) bits in the first step. Then the server

can only have at most 2
n−д(n) ∈ o(2n) internal states. Assuming

the adversary knows the protocol, as there is no other secret data,

they can craft one message corresponding to each of these internal

states. As there is at least one message that leads to acceptance,

sending a random message from the crafted set leads to acceptance

with probability ω(n × 2−n). The proof follows the same idea when

the message in the second step takes only n − д(n) bits.
□

	Abstract
	1 Introduction
	2 Typo-tolerant frameworks
	2.1 Typology of errors
	2.2 General intuition
	2.3 Substitution tolerance
	2.4 Transposition tolerance
	2.5 Insertion tolerance
	2.6 Complete framework
	2.7 Performance summary

	3 Security analysis
	3.1 Preventing access
	3.2 Obtaining credentials from the database

	4 Alternative algorithm based on the discrete logarithm and lower bounds
	4.1 Impossibility results and lower bounds
	4.2 Discrete logarithm method
	4.3 Security and performance

	5 Conclusion
	References
	6 Appendix
	6.1 Transposition tolerance
	6.2 Insertion tolerance
	6.3 Complete framework
	6.4 Lower bound for the storage

