
Moving to client-side hashing for online
authentication

Enka Blanchard1, Xavier Coquand2, and Ted Selker3

1 Digitrust, Loria, Université de Lorraine
Nikola.K.Blanchard@gmail.com, www.koliaza.com

2 Bsecure, Paris
3 University of Maryland, Baltimore County

Abstract. Credential leaks still happen with regular frequency, and
show evidence that, despite decades of warnings, password hashing is
still not correctly implemented in practice. The common practice to-
day, inherited from previous but obsolete constraints, is to transmit the
password in cleartext to the server, where it is hashed and stored. We
investigate the advantages and drawbacks of the alternative of hashing
client-side, and show that it is present today exclusively on Chinese web-
sites. We also look at ways to implement it on a large scale in the near
future.

Keywords: Hashing · Web standards · Authentication

1 Introduction

Despite multiple decades of insistence from the cybersecurity and cryptography
communities, password hashing is still far from a solved problem in practice.
Two issues are even more critical today than they were more than 25 years ago,
when vulnerabilities were first found in MD5. The first is that, although it was
first mentioned as important to security in the 1960s, long before the existence
of the Internet, password hashing is still not as commonplace as it should. Many
recent database leaks with passwords in clear reveal that even some of the largest
service providers still do not follow what was already best practices when they
were created. The most recent example is Facebook’s revelation in March 2019
that they kept a log file with more than 200 million cleartext passwords that
was accessible by more than 2000 developers. The second issue is that hashing
techniques have changed, and distributed computation on specialised hardware
has made many hashing algorithms obsolete for password purposes. Well applied
modern hashing techniques are still exceedingly rare, with the only major leaks
that showed this level of security coming from online password managers such
as LastPass [42,22].

There are many explanations for such problems, most of them with a social
component. First, developers who implement the security procedures do not
always have the relevant training [14,2]. This is linked to a culture of going faster,

www.koliaza.com


2 N. K. Blanchard et al.

at the expense of good security practices [1]. This, in turn, comes from the fact
that service providers generally suffer from negative outcomes only when security
breaches become public. Even in such cases, the incentives are not always strong
enough to effect real change — Yahoo! suffered from three leaks of increasing
magnitude between October 2016 and October 2017, which could have been
prevented had security been reinforced after the first [41].

There are many ways to address this issue, but blaming the developers has not
worked so far [14]. As such, we investigate the possibility of client-side password
hashing to be an alternative to the standard practice of server-side hashing. Its
main advantage is that client-side hashing, as opposed to server-side, is easily
detectable and analysable. This creates accountability, means that it becomes
possible to impose a direct cost on companies with poor security practices. Thus,
we can give a strong incentive to companies to reform their practices before they
suffer from major public security breaches.

This paper is organised as follows. We start by looking at the current state
of the art, both on how to hash securely and how current service providers
fail to do so. We then turn to client-side hashing, by looking at how prevalent
it is before listing its advantages and drawbacks. We finish by looking at how
large scale changes could be made in the near future, and discussing potential
improvements and complications.

2 Password hashing today

Problems were first found with the practice of storing all the passwords unen-
crypted in a single text file in the 1970s [37]. The general password architecture
that was developed at the time has not evolved much in the decades since. The
best practice still consists in hashing the password with a salt, storing this hash
on the server, and comparing the hashes to make a decision when the user tries to
login again. Client-based hashing was not always a possibility, due to compatibil-
ity issues with legacy protocols [35]. This is not true anymore — although there
is still a generally unspoken assumption that all hashing should be done server-
side. The server hashing cost was even a major point of contention in a recent
password hashing algorithm competition [20], without the authors mentioning
the possibility and impact of client-side hashing.

2.1 Best practices

As the general architecture has not changed much in the past decades, the main
questions are still the same: Which hashing function to use? How to salt the
password? How to prevent side-channel attacks?

Hashing algorithm. After problems were found in the first two common hashing
algorithms — MD5 and SHA-1 — the two principal general-purpose hashing
algorithms currently considered to be secure are SHA-2 and SHA-3 — or rather,
algorithms from these families. However, this has a caveat. They are secure



Moving to client-side hashing for online authentication 3

insofar as the string to hash has high entropy, in which case finding a preimage
for the function becomes a hard problem. Hashing a complete message with these
algorithms is then secure. However, if the number of possibilities for the original
message is limited, one can use brute-force and hash all the potential messages.
Unlike online attacks where 1010 bogus login attempts are easily noticeable, it is
easy to compute that many hashes offline, on special-made machines. This is one
of the main risks with database leaks, as even consumer machines can nowadays
brute-force more than 1 billion such hashes per second [15,11,43].

With that kind of capability, dictionary-augmented brute-forcing becomes a
strong option, as most passwords deviate only poorly from real words. This is
true no matter the kind of hashing algorithm used: if the space of all possible
inputs remain small and the search can be parallelised efficiently, it is enough to
hash all probable inputs to get the inverse of most hashes. To address this, two
main algorithms were initially used, PBKDF2 and bcrypt, which can run recur-
sively n times on their own output to artificially increase the computing time [49].
This slows down the algorithm in an unavoidable way, negating the gains due to
more powerful machines but is still vulnerable to parallel brute-forcing. Argon2
is a more recent solution, specifically made to be hard to parallelise by requiring
an arbitrarily large amount of memory [8], and is now one of a set of good al-
ternatives [20]. All the alternatives provide an adjustable parameter to increase
the time and space complexity of hashing.

Salt. The second common component in the hashing process is the salt — a
pseudorandom string that is concatenated with the password before hashing.
This is done to prevent attacks that make use of a large table of precomputed
hashes, also known as a rainbow table [33]. The salts should be different from
user to user — which is not always understood by service providers. If a single
salt is used for a whole database, it prevents attacks using generic rainbow tables,
but allows the computation of a website-specific rainbow table, only marginally
improving security. Salts are often used as an example of data stored only on
the server’s side. However, in this context of password hashing, the only goal of
the salt is to prevent precomputed tables. As such, the salt can just be the login
and website name, which is unique and always available client-side. When using
one service to login into another, one must however be careful and make sure
that the right website name is used.

Side-channels. Even using secure hashing with unique salts is not enough if
adversaries have opportunities to obtain the passwords through other means.
There is a large variety of side-channel attacks that are relevant, but two are
particularly important. The first lies in stealing the password itself when it is
transmitted in cleartext, but that has been thankfully made mostly obsolete
by the switch from HTTP to HTTPS [47]. The second comes from unsecure
password management on the server side, for example the storage of log files with
incoming requests (including cleartext passwords), as was done until recently by
Facebook [32]. Never storing sensitive data is a first step towards security, with
the advantage of being easier than never receiving it in the first place.



4 N. K. Blanchard et al.

PAKE. There already exists an alternative protocol that addresses the issues of
server-side hashing: Password Authenticated Key Exchange (PAKE) [7] , and its
derivatives, among which the Secure Remote Password protocol (SRP) [50] is the
best known. This protocol integrates asymmetric cryptography and ideas from
zero knowledge protocols to prevent the server from having enough information
to independently recomputing the password without mounting costly brute-force
attacks.

Various problems have plagued different PAKE implementations and pre-
vented widespread use, among which we can mostly cite patent problems, as
well as security issues in earlier versions of SRP [17], as it is already two decades
old. The main issue, however, is that it is quite a complex protocol, and cannot
be implemented as easily as a simple hashing function. Some more modern alter-
natives exist, such as OPAQUE [25], but they are still far from being commonly
used.

2.2 Recent database leaks

Credential leaks are becoming increasingly commonplace, with weekly reports of
stolen credentials [41], not only from start-ups and smaller corporations but also
from the biggest companies. As vulnerabilities in both MD5 and SHA-1 have
been public for more than a dozen years, one could expect that most service
providers would update their policies (even if hashing server-side), but this is
sadly not the case. Because of this, some leaks reach catastrophic proportions, as
can attest the discovery in mid-March 2019 that Facebook had stored between
200 and 600 million passwords in cleartext instead of hashing, going as far back
as 2012 [32]. Facebook revealed that the stored passwords were only accessible
to employees — and were accessed by about 2000 of them — leaving open the
question of why they had stored them in the first place. Less than a month
later, it was revealed that the social network had also asked some of its users
to provide their login details for their main email addresses, breaching all forms
of privacy concerns [27]. This is not a freak occurrence, as Twitter and GitHub
both revealed similar failures to encrypt their confidential information in the
previous ten months [31,48].

In an extensive analysis [24], Jaeger et al. looked at 31 credential leaks going
from 2008 to 2016, totalling close to 1 billion email/password pairs worldwide.
Of the leaks considered, more than half consisted of entirely unencrypted stored
credential pairs (including gmail.com in 2014 and twitter.com in 2016, although
they could not make sure the data was authentic), and only one, ashleymadi-
son.com, used a strong level of encryption — bcrypt — while still making some
mistakes. The main mistake made was storing MD5 hashes of case-insensitive
versions of the passwords, from which it was possible to compute a preimage,
leaving the option of computing the full password by hashing the 1000 or so re-
maining possibilities through bcrypt [16]. Table 1, partially extracted from [24],
shows the main authenticated leaks they analysed.



Moving to client-side hashing for online authentication 5

website encryption # accounts leaked leak date
myspace.com SHA-1 358986419 2008
gawker.com DES 487292 Dec. 2010
aipai.com MD5 4529928 Apr. 2011
csdn.net clear 6425905 Oct. 2011
tianya.cn clear 29642564 Nov. 2011
vk.com clear 92144526 2012
linkedin.com SHA-1 112275414 Feb. 2012
imesh.com MD5+salt 51308651 Sep. 2013
xsplit.com SHA-1 2990112 Nov. 2013
51cto.com MD5+salt 3923449 Dec. 2013
xiaomi.com MD5+salt 8281358 May 2014
000webhost.com clear 15035687 Mar. 2015
sprashivai.ru clear 3472645 May 2015
ashleymadison.com bcrypt 36140796 July 2015
17.media MD5 3824575 Sep. 2015
mpgh.net MD5+salt 3119180 Oct. 2015
r2games.com MD5+salt 11758232 Oct. 2015
nexusmods.com MD5+salt 5918540 Dec. 2015
mate1.com clear 27402581 Feb. 2016
naughtyamerica.com MD5 989401 Apr. 2016
badoo.com MD5 122730419 June 2016

Table 1. Partial list of leaks analysed by Jaeger et al. with number of credentials
leaked, date and encryption method used in each case, extracted from [24].

One common problem with this list is that we can only discover that service
providers were using obsolete security techniques after the damage is done, or
even much later if they do not immediately disclose observed breaches [26]. This
is where client-side hashing comes into play, as it is much easier to detect.

3 Detecting client-side hashing

One of the main interests of client-side hashing is that it is observable by the
user. Detecting it, however, often requires work. Some service providers still rely
on security through obscurity, and make their scripts obfuscated to make attacks
harder. Except in rare cases, passwords are by now generally encrypted (with a
symmetric encryption algorithm) before leaving the client’s machine. As such,
checking whether the password is still visible in outgoing packets would only
catch the very worst cases, where the password is neither hashed nor encrypted.
Thankfully, there are at least two different methods to check whether sufficiently
secure hashing is being performed.

3.1 Syntactic and semantic analyses.

The first method is the most precise of the two, and relies on — potentially
automated — code analysis. One of the simplest way is to check the libraries



6 N. K. Blanchard et al.

called by the current webpage and infer from them (for example, the presence of
no hashing library besides the inclusion of an MD5 function would be a red flag).
An improvement would be to automatically detect the password field and follow
the path of the relevant memory object (or to check whether any object sent in
an outgoing packet is identical to the password). As it depends on the skill of
the person analysing the code, this is the most versatile method and can even
work with custom-made hashing methods, but cannot be entirely automated. It
also struggles against hashing that relies on compiled code.

3.2 Computing load analysis.

An alternative and more efficient method could be used in the near future to
detect whether the website implements client-side hashing, and whether it is
secure enough. One issue is that it is not immediately relevant, as the proportion
of websites that would currently be considered secure would be infinitesimal. The
idea is quite simple: any correct implementation of a secure password hashing
algorithm requires a surge in memory and processor usage. Detecting it would
be doable, although a surge could be linked to a different process. As such, it can
mostly be used to quickly detect websites where the hashing is visibly insufficient.
Both methods could also be combined to indicate a failure to correctly hash in
most dangerous cases — while proving that it is correctly hashed would still be
harder.

3.3 Manually checking the Alexa top 50

We decided to use manual semantic analysis to check which of the top 50 global
websites — according to Amazon Alexa [4] — implemented client-side hashing.
Table 2 shows the results of this small experiment. Figure 1 shows an exam-
ple of cleartext password sent to the server (using TLS, but no hashing) on
facebook.com and the equivalent on baidu.com.

Analysis of the websites with client-side hashing. Out of the top 50 websites,
we only found 8 with client-side hashing. This is slightly misleading, however,
as some of the concerned websites, including 360.cn and qq.com, use the same
authentication system, made by baidu.com. Other websites — like csdn.net and
taobao.com— do not redirect to baidu.com but reuse very similar authentication
templates. Moreover, the 8 websites with client-side hashing correspond exactly
to the 8 websites from the top 50 that are based in the People’s Republic of
China. There are different potential explanations, which we will now investigate.

3.4 Why is client-side hashing rare?

This question we ask is twofold. First, why does every Chinese website implement
client-side hashing, and second, why are they the only ones to do so? Alas, we do
not have access to the decision-making process that led to this state of affairs.
However, we can make informed guesses by looking at regulations and incentive
structures.



Moving to client-side hashing for online authentication 7

Fig. 1. Request sent to facebook.com (top) and baidu.com (bottom) by TLS after
clicking on the login button. For facebook.com, the cleartext password is shown on the
bottom line, bordered in red. For baidu.com, the encrypted password is shown on the
third line from the bottom, right after the username.



8 N. K. Blanchard et al.

Website Client-side Website Client-side
google.com NO youtube.com NO
facebook.com NO baidu.com YES
wikipedia.org NO qq.com YES
yahoo.com NO amazon.com NO
taobao.com YES twitter.com NO
tmall.com NO reddit.com NO
instagram.com NO live.com NO
vk.com NO sohu.com NO
jd.com NO yandex.ru NO
sina.com.cn YES weibo.com YES
blogspot.com NO netflix.com NO
linkedin.com NO bilibili.com NO
twitch.tv NO pornhub.com NO
login.tmall.com NO 360.cn YES
csdn.net YES yahoo.co.jp NO
mail.ru NO bing.com NO
microsoft.com NO whatsapp.com NO
naver.com NO aliexpress.com NO
livejasmin.com NO microsoftonline.com NO
alipay.com YES ebay.com NO
xvideos.com NO tribunnews.com NO
amazon.co.jp NO google.co.in NO
github.com NO okezone.com NO
imdb.com NO google.com.hk NO
pages.tmall.com NO stackoverflow.com NO

Table 2. Result of a manual analysis on which websites implement client-side hashing.
A YES was given to each website where the password was not simply symmetrically
encrypted using TLS. All websites come from the Alexa Top 50 global websites on 07-
07-2019, with the left column corresponding to ranks 1-25, and the right one to ranks
26-50.



Moving to client-side hashing for online authentication 9

Chinese client-side hashing. The PRC imposes strong constraints on the type of
cryptography that can be used on its territory and by its companies [34], so it is
normal to see a difference in the frameworks used. One trivial consequence is that
the hashes on the relevant websites do not correspond to MD5 or SHA hashes,
and their output cannot be easily identifiable as the output of a common hash-
ing algorithm due to the character set and length parameters. A second visible
difference is that websites generally discourage users from using passwords, priv-
ileging alternative methods such as unlocking through one’s phone, as Google
recently deployed on its own service. This means that they also generally im-
plement some forms of 2-factor authentication based on cellphone usage. There
are two advantages to this design, in a context where some ISO protocols could
potentially be compromised [18,46]. The first is that it makes it easier to pre-
vent foreign actors from being able to decrypt password data exchanged with —
potentially compromised — ISO protocols while it is in transit. The second is
that, as 2-factor authentication is used, tracking users — through triangulation,
among other methods — becomes possible with the cooperation of telephone
companies 4. Strong state security incentives and a tighter cooperation — than
in the western world — between the state and large technology companies [45]
combined made it feasible to implement on a large (national) scale this kind of
technological decision.

The improved security linked to client-based hashing could then be a side-
effect of state-wide protection mechanisms against foreign actors. However, the
real question is not why those 8 websites implement client-side hashing, but
rather, why the others do not implement it.

Server-side hashing in other countries. There are many potential arguments as to
why server-side hashing is so frequent, but the main explanation is probably the
simplest: inertia and simplicity. In a world where large companies with hundreds
of millions of users (such as Mate1) still store their passwords in cleartext, the
question is not so much "why is the hashing not done on the client?" but rather
"why is the hashing not done at all, or with obsolete tools?", as shown in Table 1.
This is compounded by the fact that, unlike the general issue of hashing on which
there was a quasi-unanimity and a common push from the security community
for more than two decades, the issue of server-side versus client-side hashing is
less known, and even academic endeavours didn’t question some of the common
assumptions until recently [20,35]. Two other issues amplify this inertia and are
worth looking into.

The first is that there has been a long tradition of pitting security and func-
tionality against each other. Until recently, common practice said that any im-
provement on the first came at the expense of the other. This view has recently
been challenged, thankfully, as certain designs can in practice improve both [5]

4 This would be a natural extension of the 2002 law that forced cybercafe owners to
keep a list linking login information and state ID for all their clients [44] — in a
country where cybercafe was the main internet access point for more than a quarter
of users in 2006 [9].



10 N. K. Blanchard et al.

— similarly to how the increased complexity of password constraints in the 2000s
actually worsened both security and functionality [29].

The second issue, related to the first, is the incentive structure that surrounds
password security. Most online companies operate in an ecosystem where secu-
rity is not a cost that is paid continuously but instead where they pay nothing
until a major leak is made public. As such, there is little in the way of incentives
to push those companies to keep up to date against threats they are misinformed
about. This translates to developer culture, where security can become an af-
terthought when the goal is to implement the different functionalities as fast as
possible. Even developers aware of the security risks might end up with man-
agerial directives that go against their warnings, as the potential damage can be
underestimated until the damage is done [6]. This reactive way of handling se-
curity is alas poorly adapted to passwords as they have a domino effect on other
services [23]. Solving this bad incentive structure — at least on this front — is
one of the main advantages of making client-side hashing the norm, as shown in
the next section.

4 Cost analysis of client-side hashing

Before we discuss how to implement client-side hashing on a large scale, it’s time
to summarise its advantages and drawbacks.

4.1 Advantages

No credential reuse attack. The main advantage with client-side hashing is that,
as the password never leaves the client machine, database leaks are much less
serious. In any case, if an appropriate hashing algorithm and salt are used, an
adversary with access to the database cannot reuse the credentials to mount an
attack on a different service provider.

Lower server costs. The second advantage is that, as the hashing happens client-
side, some server resources are freed, unlike when they have to compute expensive
key derivation functions.

Stronger hashing. The previous advantage means that there is no need to com-
promise between server utilisation and security, as determined by the slowdown
factor of the hashing function. A lot of computing power can then be dedicated
to hashing, at the client’s expense (as they have a low probability of noticing).

Makes phishing more difficult. If the method becomes standardised, the use of
the website address as salt can be detected (or corrupt password hashes generated
instead). This can help against homograph attacks — where a unicode character
that is visually similar is used to get realistic-looking impostor domain names [21]
— as one among a set of other mitigation methods [19,36].



Moving to client-side hashing for online authentication 11

Simplicity. As the method can become standardised, and visible in its standard-
isation, it puts the onus on what happens on the client’s side, instead of the
server. This leaves more opportunities to improve the database design and the
server optimisation, without jeopardising security.

Accountability. The final advantage is that, if implemented at scale, this method
can create a social cost for companies that do not implement client-side hashing,
as they become known for having lax security practices. In consequence, the
cost is transferred to the developers, who have a direct interest in improving
the security. This is opposed to what happens currently, as explained earlier, as
most developers spend time on security issues only in a reactive manner, after
the leak has already happened. This allows the system to have detectable issues
that are not only observable through catastrophic failures.

4.2 Drawbacks

There are four central drawbacks to client-side hashing, depending on how it is
implemented.

Authentication attacks after leaks. The first issue happens if an attacker manages
to obtain a copy of the database. They could then copy the hash and send a valid
authentication message to the website. Two factors mitigate this. The first is that
it is quite trivial to prevent it by having double hashing, whereby the service
provider also runs a minimal amount of hashing server-side, thus preventing this
attack. In such a case, the server-side hashing does not require strong security
parameters, and a simple SHA-256 is enough 5, as it is not the security bottleneck
— as long as the client-side hashing is solid enough to prevent brute-force. The
second factor is simply that an adversary able to steal the password database
is also most probably able to steal and affect most other systems. As such, the
impact would mostly concern buyers of said database rather than the original
attacker.

Computing power limits. The second issue is that servers generally have more
computing power than at least some of the client devices. As long as most clients
authenticate through computers or modern mobile devices, this should not be
problematic, as the computing power and, even more importantly, the memory
available tend to be more than what many servers could generally afford for a
single user, even in an unoptimised Javascript implementation. That said, with
the advent of the Internet of Things, some devices with very low power could
be involved and require password authentication, which could complicate the
matter.
5 MD5 would not work as it would be easy for an adversary with the leaked database
to create an attack: instead of finding the original password, they would only need
to find an MD5 collision for it.



12 N. K. Blanchard et al.

Script blocking. A third potential issue — although it is quite minor — is that
client-side hashing can be blocked by the client. This is especially true among
users who are sensitive to security issues and block all scripts by default. The
jump in memory and CPU use could also trigger warnings as they would occur
in a way similar to cryptojacking6 [12].

Incompatibility with legacy protocols. The last issue is quickly disappearing, but
is one reason why client-side hashing is still quite rare, through inertia. Some
older protocols, especially homebrews, required a cleartext password to func-
tion [35].

5 Making changes to the hashing process

As the overwhelming majority of hashing is done server-side today, changing this
requires a relatively large amount of labour. We see three main avenues to make
the relevant changes, that could all be attempted in parallel.

5.1 A service-centric view

From a service provider point of view, the interest in switching to client-side
hashing are akin to those of switching to hashing from initially having stored
passwords in cleartext, with a few key differences. The first is that the relative
security gains are weaker, whether in terms of real security or in terms of public
blame if the security is broken. There is little difference between "adequate" and
"strong" security procedures when compared to having "inadequate" security.
On the other hand, switching to client-side hashing saves on server costs and
code complexity, unlike switching from cleartext to hashed passwords. Hence,
although the costs of switching are smaller, the benefits are correspondingly
weaker. Moreover, all these are moot points if the incentive structure stays the
same, as even the first switch to hashed passwords isn’t universal yet.

There is one way to change this incentive structure, by involving major
browser developers. A client-side hashing detection system could be integrated
into a browser, and give a warning to users when passwords are not handled
correctly. This detection system would of course be imperfect and let some web-
sites badly handle passwords while not showing warnings. That said, it could be
enough to create a real cost on the service providers, who might lose users to
security concerns. Ideally, this could happen in a way similar to what was seen
during the switch from HTTP to HTTPS, by first adding warnings and then
blocking service providers with unsecure practices (unless the user confirms that
they are aware of the risks). Despite the complexity of the architectural changes
required [30], browser warnings changed the incentives and had a fast and large-
scale impact [40,13]. Finally, convincing one such actor might also probably be

6 Cryptojacking corresponds to the hidden execution of code inside a browser to mine
cryptocurrencies while the user is visiting a website.



Moving to client-side hashing for online authentication 13

enough for the others to follow suit, as other browsers would have some pressure
to be perceived as secure to the users as the one displaying the warnings. Adopt-
ing some standard header could also help differentiate between websites with
probably obsolete security practices and the rest, which would be composed of
websites with good security practices and high quality phishing websites [28].

5.2 A user-centric view

From the end user’s perspective, the issue is different, as there is a wide vari-
ability of possibilities when it comes to users’ goals, constraints, and expertise.
As long as independent service providers switch to client-side hashing, the pro-
cess is mostly invisible to users7, and should have no negative effects. User costs
would only appear in one of two cases: if a browser starts implementing warning
systems, interrupting users’ actions, or if a user decides to take matters in their
own hands by using an extension that implements a warning system. We’ll start
by looking at how the second could happen.

An extension to warn users. The first and easiest short term solution is to
create a short script — a priori in the form of a browser extension — to detect
whether the password is sent in cleartext to the service provider. This script
could be based on some of the methods mentioned earlier, such as detection of
the password string in the outgoing packets, or use of computing resources. It
could be displayed next to the padlock corresponding to HTTPS connections, in
the form of a warning in the address bar — or potentially even more aggressively
as a pop-up. The effects on the user would be partially detrimental as it would
distract from their current task, although it could help some users avoid using
passwords on unsecure websites. The main advantage of this would however be
the incentive structure it would create to switch systems if widely deployed.

There is one potential drawback of this method in the form of a privacy
risk similar to the one we just started observing on HTTPS padlocks [39,10].
If the warning system shows not only indications of risky websites but also of
safe ones, corrupting the warning system itself becomes a worthy goal. As such,
users could be more easily fooled by phishing attempts that manage to show good
password security than they would with neither positive nor negative warnings.
That might be less of an issue because, unlike HTTPS, warning systems for
client-side hashing would easily detect bad practice but struggle to detect truly
good practice8, but still bears keeping in mind.

7 The only way for it to be visible is if it unduly increases delays by asking too
many rounds of hashing on a low-powered device, but this is a matter of parameter
optimisation where wide margins could be taken by default to avoid this issue.

8 For example, to be sure the password is not sent in cleartext, one would need to
make sure that the password field is accessed exactly once as input to the hash func-
tion, otherwise any reversible function could be used before transmitting, dodging
accusations of cleartext sending. Similarly, the website could trigger some expensive
computation without using it to fool resource monitors.



14 N. K. Blanchard et al.

Detecting and hashing passwords on the client. A more extreme case for more
technically inclined — and concerned — users would be to use a different kind
of extension, as a stopgap measure. Instead of checking whether the password is
sent in cleartext, it would be possible to automatically detect password fields —
as Google Chrome does — and offer a second field through the extension. After
the user types their password in that second field, the hashed result could be
directly input into the original field. This bypasses a few issues and adds some
level of security, but would also be harder to optimise than if done natively by
the service provider. One concern then would be that the user’s password could
not be directly used on a different device without the extension. The website
changing its domain name would also create problems that are harder to address
from this client-centric view.

6 Discussion

We have shown that client-side hashing benefits from multiple advantages, and
that its drawbacks often come from older constraints and are quickly becoming
less relevant. Despite this, among the most used websites, it is only used today
by Chinese service providers, as part of a larger security suite common to many
of them. After observing the issues caused by server-side hashing, we provide
some ideas to detect such hashing techniques at a larger scale than what we
manually did. We also propose integrating them into common browsers to change
the incentive structure for developers and companies involved in the security
ecosystem. We finish by offering some alternatives for end users, such that all
solutions mentioned could be used in parallel.

The changes we propose are minimal and have some self-perpetuating mech-
anisms, exactly because expecting a sudden and non-trivial change from a large
security ecosystem would be idealistic. There are of course alternatives to the so-
lutions proposed, such as Time-based One-time Password algorithms [38], which
solve many issues mentioned. The problem, as with all other security improve-
ments, is getting large actors to make the requisite changes. A different alter-
native is to use password managers — which the hashing extension we mention
imitates in some ways — but this brings us back to older security models by shift-
ing all costs to the user. Moreover, password managers still have low penetration
on mobile devices and are not always compatible with all users’ constraints [3].

We see two ways to go further in the direction we explored. First, it seems
wise to investigate whether the increasing role played by low-power devices in the
Internet of Things could create bottlenecks security-wise. Second, to increase the
amount of hashing time available, one could hash the password letter by letter,
using the lapse between keystrokes to hash what is available for a set duration
and using this as a salt for the next hash. This is not currently done, and could
potentially create security vulnerabilities, so a thorough cryptanalysis of this
method should be done with the currently used password hashing functions. On
the usability side, there is also the question of finding an ideal delay to resist
parallelised attacks without creating a time cost for users on lower-end devices.



Moving to client-side hashing for online authentication 15

Acknowledgements

We’re grateful to participants of the Privacy and Security Workshop, IU Gateway
Berlin, for their comments. This work was supported partly by the french PIA
project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE.

References

1. Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M.L., Stransky, C.: How internet
resources might be helping you develop faster but less securely. IEEE Security
Privacy 15(2), 50–60 (March 2017). https://doi.org/10.1109/MSP.2017.24

2. Acar, Y., Fahl, S., Mazurek, M.L.: You are not your developer, either:
A research agenda for usable security and privacy research beyond end
users. In: IEEE Cybersecurity Development – SecDev. pp. 3–8 (Nov 2016).
https://doi.org/10.1109/SecDev.2016.013

3. Alkaldi, N., Renaud, K.: Why do people adopt, or reject, smartphone password
managers? In: Proceedings of EuroUSEC (2016), eprint on Enlighten: Publications

4. Amazon Alexa: 500 global sites (2019), http://alexa.com/topsites/
5. Baskerville, R., Rowe, F., Wolff, F.C.: Functionality vs. security in is: Tradeoff or

equilibrium. In: International Conference on Information Systems. pp. 1210–1229
(2012)

6. Baskerville, R., Spagnoletti, P., Kim, J.: Incident-centered information security:
Managing a strategic balance between prevention and response. Information &
management 51(1), 138–151 (2014)

7. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: Proceedings 1992 IEEE Computer Society
Symposium on Research in Security and Privacy. pp. 72–84. IEEE (1992)

8. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: new generation of memory-
hard functions for password hashing and other applications. In: IEEE European
Symposium on Security and Privacy – EuroS&P. pp. 292–302. IEEE (2016)

9. Center, C.I.N.I.: 18th statistical survey report on the internet development in china.
Tech. rep., CINIC (2006)

10. Cimpanu, C.: Extended validation (ev) certificates abused to create insanely believ-
able phishing sites (2017), https://www.bleepingcomputer.com/news/security/
extended-validation-ev-certificates-abused-to-create-insanely-believable-phishing-sites/

11. Dürmuth, M., Kranz, T.: On password guessing with gpus and fpgas. In: Mjølsnes,
S.F. (ed.) Technology and Practice of Passwords. pp. 19–38. Springer International
Publishing, Cham (2015)

12. Eskandari, S., Leoutsarakos, A., Mursch, T., Clark, J.: A first look at browser-
based cryptojacking. In: 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). pp. 58–66. IEEE (2018)

13. Felt, A.P., Barnes, R., King, A., Palmer, C., Bentzel, C., Tabriz, P.: Measur-
ing {HTTPS} adoption on the web. In: 26th {USENIX} Security Symposium
({USENIX} Security 17). pp. 1323–1338 (2017)

14. Florêncio, D., Herley, C., van Oorschot, P.C.: An administrator’s guide to internet
password research. In: LISA. vol. 14, pp. 35–52 (2014)

15. Ge, C., Xu, L., Qiu, W., Huang, Z., Guo, J., Liu, G., Gong, Z.: Optimized password
recovery for sha-512 on gpus. In: IEEE International Conference on Computational
Science and Engineering – CSE – and Embedded and Ubiquitous Computing –
EUC. vol. 2, pp. 226–229. IEEE (2017)

https://doi.org/10.1109/MSP.2017.24
https://doi.org/10.1109/SecDev.2016.013
http://alexa.com/topsites/
https://www.bleepingcomputer.com/news/security/extended-validation-ev-certificates-abused-to-create-insanely-believable-phishing-sites/
https://www.bleepingcomputer.com/news/security/extended-validation-ev-certificates-abused-to-create-insanely-believable-phishing-sites/


16 N. K. Blanchard et al.

16. Goodin, D.: Once seen as bulletproof, 11 million+ ashley madison passwords
already cracked (2015), https://web.archive.org/web/20180803014106/
https://arstechnica.com/information-technology/2015/09/
once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/

17. Green, M.: Let’s talk about pake (2018), https://web.archive.org/web/
20190426024348/https://blog.cryptographyengineering.com/2018/10/19/
lets-talk-about-pake/

18. Hales, T.C.: The NSA back door to NIST. Notices of the AMS 61(2), 190–19 (2013)
19. Hannay, P., Baatard, G.: The 2011 idn homograph attack mitigation survey.

In: Proceedings of the International Conference on Security and Management
(SAM’12) (2012)

20. Hatzivasilis, G., Papaefstathiou, I., Manifavas, C.: Password hashing competition-
survey and benchmark. IACR Cryptology ePrint Archive (2015)

21. Holgers, T., Watson, D.E., Gribble, S.D.: Cutting through the confusion: A mea-
surement study of homograph attacks. In: USENIX Annual Technical Conference,
General Track. pp. 261–266 (2006)

22. Independent Security Evaluators: Password managers: Under the hood of
secrets management. Tech. rep., ISE (2019), https://web.archive.org/
web/20190301171335/https://www.securityevaluators.com/casestudies/
password-manager-hacking/

23. Ives, B., Walsh, K.R., Schneider, H.: The domino effect of pass-
word reuse. Communications of the ACM 47(4), 75–78 (Apr 2004).
https://doi.org/10.1145/975817.975820

24. Jaeger, D., Pelchen, C., Graupner, H., Cheng, F., Meinel, C.: Analysis of publicly
leaked credentials and the long story of password (re-) use. In: Proc. Int. Conf.
Passwords (2016)

25. Jarecki, S., Krawczyk, H., Xu, J.: Opaque: an asymmetric pake protocol secure
against pre-computation attacks. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 456–486. Springer (2018)

26. Karyda, M., Mitrou, L.: Data breach notification: Issues and challenges for security
management. In: Mediterranean Conference on Information Systems (2016)

27. Khandelwal, S.: Facebook caught asking some users passwords for their email
accounts (2019), https://web.archive.org/web/20190404071339/https://amp.
thehackernews.com/thn/2019/04/facebook-email-password.html

28. Kisa, K., Tatli, E.: Analysis of http security headers in turkey. International Journal
of Information Security Science 5(4), 96–105 (2016)

29. Komanduri, S., Shay, R., Kelley, P.G., Mazurek, M.L., Bauer, L., Christin, N., Cra-
nor, L.F., Egelman, S.: Of passwords and people: Measuring the effect of password-
composition policies. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. pp. 2595–2604. CHI ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1978942.1979321

30. Kranch, M., Bonneau, J.: Upgrading https in mid-air. In: Proceedings of thz 2015
Network and Distributed System Security Symposium. NDSS (2015)

31. Krebs, B.: Twitter to all users: Change your password now! (2018),
https://web.archive.org/web/20190402093127/https://krebsonsecurity.
com/2018/05/twitter-to-all-users-change-your-password-now/

32. Krebs, B.: Facebook stored hundreds of millions of user pass-
words in plain text for years (2019), https://web.archive.
org/web/20190322091235/https://krebsonsecurity.com/2019/03/
facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/

https://web.archive.org/web/20180803014106/https://arstechnica.com/information-technology/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
https://web.archive.org/web/20180803014106/https://arstechnica.com/information-technology/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
https://web.archive.org/web/20180803014106/https://arstechnica.com/information-technology/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
https://web.archive.org/web/20190426024348/https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://web.archive.org/web/20190426024348/https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://web.archive.org/web/20190426024348/https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://web.archive.org/web/20190301171335/https://www.securityevaluators.com/casestudies/password-manager-hacking/
https://web.archive.org/web/20190301171335/https://www.securityevaluators.com/casestudies/password-manager-hacking/
https://web.archive.org/web/20190301171335/https://www.securityevaluators.com/casestudies/password-manager-hacking/
https://doi.org/10.1145/975817.975820
https://web.archive.org/web/20190404071339/https://amp.thehackernews.com/thn/2019/04/facebook-email-password.html
https://web.archive.org/web/20190404071339/https://amp.thehackernews.com/thn/2019/04/facebook-email-password.html
https://doi.org/10.1145/1978942.1979321
https://web.archive.org/web/20190402093127/https://krebsonsecurity.com/2018/05/twitter-to-all-users-change-your-password-now/
https://web.archive.org/web/20190402093127/https://krebsonsecurity.com/2018/05/twitter-to-all-users-change-your-password-now/
https://web.archive.org/web/20190322091235/https://krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/
https://web.archive.org/web/20190322091235/https://krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/
https://web.archive.org/web/20190322091235/https://krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/


Moving to client-side hashing for online authentication 17

33. Kumar, H., Kumar, S., Joseph, R., Kumar, D., Singh, S.K.S., Kumar, P.: Rainbow
table to crack password using md5 hashing algorithm. In: IEEE Conference on
Information & Communication Technologies – ICT. pp. 433–439. IEEE (2013)

34. MartinKauppi, L.B., He, Q.: Performance Evaluation and Comparison of Standard
Cryptographic Algorithms and Chinese Cryptographic Algorithms. Master’s thesis
(2019)

35. Mazurek, M.L., Komanduri, S., Vidas, T., Bauer, L., Christin, N., Cranor, L.F.,
Kelley, P.G., Shay, R., Ur, B.: Measuring password guessability for an entire uni-
versity. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer Com-
munications Security. pp. 173–186. CCS ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2508859.2516726

36. McElroy, T., Hannay, P., Baatard, G.: The 2017 idn homograph attack mitigation
survey. In: Proceedings of the 15th Australian Information Security Management
Conference (2017)

37. Morris, R., Thompson, K.: Password security: A case history. Communications of
the ACM 22(11), 594–597 (Nov 1979). https://doi.org/10.1145/359168.359172

38. M’Raihi, D., Machani, S., Pei, M., Rydell, J.: Rfc6238: Totp: Time-based one-time
password algorithm (2011), https://tools.ietf.org/html/rfc6238

39. Peng, P., Xu, C., Quinn, L., Hu, H., Viswanath, B., Wang, G.: What happens after
you leak your password: Understanding credential sharing on phishing sites. In:
AsiaCCS 2019. pp. 181–192 (07 2019). https://doi.org/10.1145/3321705.3329818

40. Schechter, E.: Moving towards a more secure web (2016), https:
//web.archive.org/web/20190405120627/https://security.googleblog.
com/2016/09/moving-towards-more-secure-web.html

41. Shape: 2018 credential spill report. Tech. rep., Shape Security (2018)
42. Siegrist, J.: Lastpass hacked – identified early & resolved (2015),

https://web.archive.org/web/20190412054716/https://blog.lastpass.
com/2015/06/lastpass-security-notice.html/

43. Sprengers, M.: GPU-based Password Cracking. Master’s thesis, Radboud Univer-
sity Nijmegen (2011)

44. State Council of the People’s Republic of China: Regulations on administration of
business premises for internet access services, article 23 (2002)

45. Swaine, M.D.: Chinese views on cybersecurity in foreign relations. China Leader-
ship Monitor (42) (2013)

46. Tryfonas, T., Carter, M., Crick, T., Andriotis, P.: Mass surveillance in cyberspace
and the lost art of keeping a secret. In: International Conference on Human Aspects
of Information Security, Privacy, and Trust. pp. 174–185. Springer (2016)

47. Vyas, T., Dolanjski, P.: Communicating the dangers of non-secure http (2017),
https://web.archive.org/web/20190524003142/https://blog.mozilla.org/
security/2017/01/20/communicating-the-dangers-of-non-secure-http/

48. Whittaker, Z.: Github says bug exposed some plaintext passwords (2018),
https://web.archive.org/web/20190331110732/https://www.zdnet.com/
article/github-says-bug-exposed-account-passwords/

49. Wiemer, F., Zimmermann, R.: High-speed implementation of bcrypt password
search using special-purpose hardware. In: International Conference on ReCon-
Figurable Computing and FPGAs – ReConFig. pp. 1–6. IEEE (2014)

50. Wu, T.: The SRP authentication and key exchange system. Tech. rep., RFC Editor
(2000)

https://doi.org/10.1145/2508859.2516726
https://doi.org/10.1145/359168.359172
https://tools.ietf.org/html/rfc6238
https://doi.org/10.1145/3321705.3329818
https://web.archive.org/web/20190405120627/https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://web.archive.org/web/20190405120627/https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://web.archive.org/web/20190405120627/https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://web.archive.org/web/20190412054716/https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://web.archive.org/web/20190412054716/https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://web.archive.org/web/20190524003142/https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://web.archive.org/web/20190524003142/https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://web.archive.org/web/20190331110732/https://www.zdnet.com/article/github-says-bug-exposed-account-passwords/
https://web.archive.org/web/20190331110732/https://www.zdnet.com/article/github-says-bug-exposed-account-passwords/

	Moving to client-side hashing for online authentication

