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Abstract—As passwords remain the main online authentication
method, focus has shifted from naive entropy to how usability
improvements can increase security. Chatterjee et al. recently
introduced the first two typo-tolerant password checkers, their
second being usable in practice while being able to correct up to
32% of typos, with no real security cost.

We propose an alternative framework which corrects up to
57% of typos without affecting user experience, at no computa-
tional cost to the server.

Index Terms—Usable security, Passwords, Hashing functions

I. INTRODUCTION

Despite recent advances in biometric authentication [1] and
account linking [2], passwords are still the main method of
authentication used online and will probably remain so in the
near future. Countless studies have been written on the pitfalls
of password-based authentication [3], [4], initially focusing
on low security, with users creating bad passwords [5] and
repeatedly dodging security measures [6]–[8], but also service
providers ignoring best practices on how to secure password
databases [9]. More recently, research on how to make them
more usable has made advances [10], [11], and some of the
effects of bad password policies are being reversed [12], to
focus on longer passwords. Unlike random passwords with
special characters which suffer from low memorability [13],
long and simple passwords and passphrases [14]–[16] can
benefit from humans’ superior ability to memorise strings that
make sense, improving both security and usability [17], [18].
As authentication becomes an omnipresent task, being refused
access is increasingly frustrating, with forgetting one’s pass-
word being perceived about as frustrating as forgetting one’s
keys [19]. Moreover, users sometimes forget their passwords,
and often mistype them. To prevent some of this frustration
and improve usability, some services like Facebook have
discreetly adopted typo correction for the 2-3 most frequent
typos, such as forgetting the caps lock or capitalising the first
character of a password on a mobile device [20].

In an innovative paper in 2016 [21], Chatterjee et al. discov-
ered that a vast majority of authentication failures comes from
a few simple typos, and that it could turn 3% of the users away.
They developed a first typo-tolerant password checker which
was highly secure (and computationally intensive) but could
only correct about 20% of typos. The same team developed
a second system called TypTop [22], which is efficient both
computationally and memory-wise, and corrects up to 32% of
typos. This system works by keeping a cache of allowed pass-

word hashes corresponding to the frequent typos made by the
user, and updates this cache at each successful authentication.
Using a different approach, Blanchard also proposed a simple
theoretical method based on homomorphic encryption that is
too computationally expensive to be usable in practice [23].
Finally, Woodage and some of the original authors created a
new distribution-sensitive scheme that adjusted the error rate
and hashing time, improving the resistance to certain attacks
and providing better time/security trade-offs [24].

Those systems can actually have a positive impact on
security as they make long passwords — which are more error-
prone — much more usable, lowering the cost of using highly
secure passwords. The issue with the schemes proposed is that
they are technically complex, which often creates difficulties in
the implementation [25], [26]. As such, we wondered whether
similar performances could be attained with simpler designs,
and how to create a system that increased the usability even
further, while satisfying the following constraints:
• Usability: the system should make it easier to log into

a service (by correcting as many legitimate typos as
possible).

• Security: the system should have similar resistance to
present frameworks against known attacks on passwords.

• Efficiency: the system should require as little computa-
tion, communication and storage as possible.
Main results: Based on a completely different design,

we introduce a simple typo-tolerant framework that satisfies
the different constraints mentioned. It improves usability by
correcting up to 57.8% of total typos, or up to 91.2% of
acceptable typos. It is efficient, requiring limited client-side
and next to no server-side computation, as well as low com-
munication bandwidth and limited storage. It is simple, being
easily implementable and compatible with other systems, as
well as being retro-compatible with other frameworks. Finally,
it is secure, limiting the risks of both credential spoofing and
credential theft.

Structure of the paper: This paper starts by an analysis
of the typos shown in Chatterjee et al.’s initial study [21],
which we recompute as the classification is not directly
compatible with the analyses in our model (although they
remain mostly comparable). We then describe the intuition
behind the framework we propose, followed by the algorithms
themselves and the security analyses. We conclude and discuss
those results, and the appendix features an example run of the
algorithm on each potential error.



II. TYPOLOGY OF ERRORS

Before introducing our framework, we want to provide
an analysis of the most frequent user errors, as studied
in [21], [22]. As motivation for the first error-tolerant password
checker, Chatterjee et al. ran an experiment using Mechanical
Turk to look at the types of errors committed by users typing
other people’s password. They published a summary analysis
with their algorithm in [21] and made the data publicly
accessible.

In the original study, the authors chose to only look at
strings whose Damerau-Levenshtein distance [27] was less
than 2, as well as errors where the caps lock was inverted for
the whole string. We decided to run a more detailed analysis
of the first data-set, shown in Table I. Some of the errors
considered in [21] would probably not happen in the real
world, mostly inserting spaces and transcription errors — such
as confusing ”1” and ”l”. This creates differences between
analyses, but both agree that handling caps lock as well as
single substitution, transposition, insertion and shifting errors
would handle 65% to 73.9% of errors.

Typo category Wrong password %
Single substitution 31.3

QWERTY neighbour 14.7
Numpad neighbour 0.6
Single shift 9.0

Single deletion 20.5
Caps lock 15.5
Single insertion 13.9

Space 2.1
Duplicated letter 4.0

Single transposition 4.2
Other 15.7

TABLE I
TYPES OF TYPOS RECOMPUTED ON THE ORIGINAL DATA-SET FROM [21],

OVER ALL PASSWORDS AT DISTANCE AT MOST 6 FROM THE ORIGINAL,
PLUS COMPLETE CAPITALISATION ERRORS.

Two main questions arise when looking at such data: which
errors are legitimate typos, and which legitimate typos should
be corrected. Considering the length of passwords in the
database, we chose to look at Levenshtein distances up to
4, discounting transcription errors. . From this, the set of
acceptable typos will correspond to typos at distance at most 2,
except ones involving deletions or substitutions by a distant
character. We chose to exclude both, as deletions would greatly
increase the risk of targeted attacks as shown in the next
section, and to only allow proximity substitutions. Such a
substitution happens when the key pressed is one of the six
keys closest to the original one (two above, two below, and
one on each side).

Chatterjee et al.’s model generally does not seek to correct
transcription errors, so our set of errors is almost a superset
of theirs. Thus, although we use slightly different metrics
and proportions, comparing proportions directly between their
model and ours can only reduce the difference in corrected
proportions (i.e., we correct 57% in our model, and they
correct 32% in their model, which would be less than 32% in
our model). The model we present then corrects the following:

substitutions of adjacent characters (15.3%), single capitalisa-
tion (9.0%), full capitalisation (15.5%), single transposition
(4.2%), insertion of spaces or duplicate characters (2.1%
and 4.0%). We finally also choose to correct the remaining
arbitrary insertions (7.7%) as it does not have a large impact
on security, for a total of 57.8%. This is when compared
to the total number of typos that does not exclude deletions
and arbitrary substitutions. The unacceptable typos represent
36.6% of all typos, leaving only 5.6% of typos left that are
neither corrected nor immediately dangerous to correct.

III. A TYPO-TOLERANT FRAMEWORK

A. Definitions and general intuition

This framework is a set of three algorithms: one to create a
password (key-setting), one for the user to compute and send
their password to the server when asked their credentials (key-
sending), and the last one for the server to check whether the
credentials received should be accepted (key-checking). The
framework works with a variety of typo tolerance policies,
such as only accepting capitalisation errors, or only certain
forms of keyboard proximity errors (accepting an ”r” instead
of ”e”, but not a ”d”).

There are of course many different potential frameworks.
For example, the simplest efficient typo-checking framework
would consist in storing the value for both the hash of the
normal password and the hash of the string corresponding to
the same password in caps lock. More than 15% of typos
could be handled this way, at the cost of storing and comparing
a single additional hash. The simplest complete system is to
store — or send — hashes corresponding to all possible typos.
The problem is that, depending on the typos corrected, this
system requires the storage or communication of hundreds of
hashes, making the system less efficient and more vulnerable
to random collisions.

The framework shown is in fact the third iteration of a
process where each step corresponds to a framework that
handles more typos than the previous one. The first and
simplest step only addresses the most frequent typo: single ad-
jacent substitution errors, where one character in the password
is replaced by another neighbouring character. For example,
an ”e” could be replaced by an ”r”, a proximity error that
should be accepted, whereas replacing ”e” by ”m” should lead
the algorithm to reject. We also rely on the agreement over
a canonical keyboard map, assigning every key-press to an
integer. For example, one could use the JavaScript key codes,
whose main list goes from 8 till 255, but less than 100 of those
numbers correspond to usual keys. Instead of the layout, the
keyboard map depends on a map from key-presses (such as
”a” or ”SHIFT+a”). The initial framework of the series broadly
works as follows:

1) The password of length n is split into n partial pass-
words, each missing one character.



2) The partial passwords are concatenated with a salt1

before being hashed.
3) Pseudorandom permutations within the set of character

codes are computed (generally [0, 255]), based on the
hashes, using Brassard’s algorithm [28].

4) Each excluded character and all the adjoining ones
on the keyboard are encoded using the corresponding
permutation.

5) The user sends the login message, a list of n (hash,
number list) pairs.

6) If one hash is correct, and the stored number is in the
corresponding list, the server authenticates the user.

The framework shown here extends this idea and adds in-
sertion and transposition tolerance, by removing two adjacent
characters and computing the hashes, and sending the images
of the missing characters through different permutations. The
three algorithms of the framework are shown in the following
pages: key-setting in Algorithm 1, key-checking in Algo-
rithm 2 and key-sending in Algorithm 3. Then comes some
reflections on the design choices, and security properties in
the following section.

Data: Username NAME, Password P of length n
Keyboard map M : Keys → [0, 255]
Result: Main hash and lists of (hash / integer) and (hash / integer list) pairs
begin

S[0]←−SHA3-256(NAME)
for i from 1 to 5 do

S[i]←−SHA3-256(S[i− 1])
H0 ←−Argon2(Concatenate(S[0], P ))
if n < 10 then

return H0 /* Preventing general typo correction on
very short passwords. */

else
while Length (P ) ≥ 16 do

P .append(S[0][0]) /* Making the passwords have
uniform minimum length of 16. */

for i from 1 to n do
PAi ←− P \ P [i]
HAi ←−Argon2(Concatenate(S[1], PAi))
Random bits ←− SHA3-256(Concatenate(S[2], PAi)
πi ←− Brassard(Random bits)
Ki ←− πi(M(P [i]))

for i from 1 to n− 1 do
PBi ←− P \ {P [i]

⋃
P [i+ 1]}

HBi ←−Argon2(Concatenate(S[1], PBi))
for j from 1 to 4 do

Random bits[j] ←−
SHA3-256(Concatenate(S[j + 1], Pi))
πi,j ←−Brassard(Random bits[j])

KAi ←− [πi,1(M(P [i]))]
KBi ←− [πi,2(M(P [i+ 1]))]
KCi ←− [πi,3(M(P [i]))]
KDi ←− [πi,4(M(P [i+ 1]))]

return
(H0, (HAi, Ki)i≤n, (HBi, KAi, KBi, KCi, KDi)i≤n−1)

Algorithm 1: Key-setting algorithm

B. Design choices and optimisations

The question of which proximity errors should be allowed
is quite simple, but when it comes to inserted letters it
becomes non-trivial. For example, duplicated letters or added
spaces seem like good candidates, whereas letters far from the
nearby keys might not be legitimate typos. Additionally, some

1The salt here can be any arbitrary string, using the login plus a number
works, the main goal being to avoid precomputed tables.

Data: Length n, Original hash H , Original list (HAi, Ki)
Original list (HBi, KAi, KBi, KCi, KDi)
Received hashes H0 and H′0 and list (H′i, LAi, LBi, LCi, LDi)
Result: ACCEPT if and only if the password has at most one acceptable typo.
begin

if H = H0 OR H = H′0 then
return ACCEPT

else
if n < 10 then

WAIT(RANDOM(0.1-1))/* in ms, against timing
attacks */

return REJECT
else

for i from 1 to n− 1 do
if HBi = H′i then

for j from 1 to |LAi| do
if (LAi[j] = KAi AND LBi[1] = KBi)

OR
(LBi[j] = KBi AND LAi[1] = KAi) then

return ACCEPT
if LCi[1] = KCi AND LDi[1] = KDi then

return ACCEPT
else

if HAi = H′i AND LBi[2] = KBi then
return ACCEPT

if HAn = H′n AND LBn[2] = KBn then
return ACCEPT

WAIT(RANDOM(0.1-1))
return REJECT
Algorithm 2: Key-checking algorithm

Data: Username NAME, Password P of length n, Keyboard map M : Keys
→ [0, 255]

Result: Two main hashes and list of (hash / integer list) pairs
begin

S[0]←−SHA3-256(NAME)
for i from 1 to 5 do

S[i]←−SHA3-256(S[i− 1])
P ′ ←−Invert caps lock(P )
H0 ←−Argon2(Concatenate(S[0], P ))
H′0 ←−Argon2(Concatenate(S[0], P ′))
if n < 10 then return (H0, H

′
0) /* Only sending caps lock

for short passwords. */
else while |P | < 16 do P.append(S[0][0])
for i from 1 to n− 1 do

while |Neighbours(P [i])| < MAX NEIGHBOURS do
Neighbours(P [i])←− any k with k > maxl(M(l))

/* Making the neighbours lists have
uniform length by adding dummy characters.

*/
for i from 1 to n− 1 do

Pi ←− P \ {P [i]
⋃
P [i+ 1]}

Hi ←−Argon2(Concatenate(S[1], Pi))
for j from 1 to 4 do

Random bits[j] ←−SHA3-256(Concatenate(Hi + S[j + 1]))
πi,j ←−Brassard(Random bits[j])

LAi ←− [πi,1(M(i)), πi,1(M(SHIFT (P [i])))]
foreach j ∈ Neighbours(P [i]) do

LAi.append(πi,1(M(j))
LAi.sort()
LBi ←− [πi,2(M(i+ 1)), πi,2(M(SHIFT (P [i+ 1])))]
foreach j ∈ Neighbours(P [i+ 1]) do

LBi.append(πi,2(M(j))
LBi.sort()
LCi ←− [πi,3(M(P [i+ 1]))], LDi ←− [πi,4(M(P [i]))]

return (H0, H
′
0, (Hi, LAi, LBi, LCi, LDi)1≤i≤n−1)

Algorithm 3: Key-sending algorithm

insertions go with other typos, especially with shift errors.
This happens when, instead of hitting the shift key followed
by the targeted letter, the user hits a key next to the shift key,
committing a double typo.

Instead of a permutation, a function from [0, 255] to a
greater set could also be used, as it could increase the security
by reducing the probability that an adversary could guess the
correct number. This is a trade-off between simplicity, effi-
ciency, and security. The main advantage is that it would lower



the success probability of attacks with hashes of different
dictionary words. This is not relevant as the advantage of this
type of attacks over dictionary attacks is limited in scope by
the low probability of getting a correct number in the list (
≤ 7

255 ).
If we don’t allow double proximity errors, LBi is redundant

with LAi+1, and all single-character typos that are not on
the last letter of the password could be corrected using only
LAi+1. We still include it as it only marginally increases
computing costs client-side and increases communication costs
by at most 19%.

We call Brassard’s algorithm to lazily get the permutation
by computing the image of an element only when it is
needed (instead of computing all images at the initialisation,
e.g. through the Fisher-Yates algorithm [29]). In our case,
we require 8 pseudorandom bits per element. We need the
images of k = |Neighbours(P [i])| random element chosen
uniformly among all possible permutations in a deterministic
way dependent on the seed. Fisher-Yates’ algorithm would
require about 713 random bits if implemented correctly2,
which could be attainable using a longer salt for the seed
(hundreds of bits) and a PRNG with variable output. Using
Brassard’s algorithm [28], we require at most 8 bits per call,
and at most 80 bits in the calls made by the key-sending
algorithm. This allows us to use most PRNG with fixed output
length.

The presence of the full hash H0 is not strictly necessary,
but it allows the server to check if everything is right in one
comparison. An alternative would be to check (H1, L[1]) and
(H2, L[2]), thus detecting the presence of an error, in which
case at least one of the hashes would be incorrect. The other
hashes can be checked lazily if both tests lead to rejection.

IV. SECURITY ANALYSIS

As we seek to improve authentication systems, we have
two goals: preventing people without correct credentials from
logging in, and preventing people with — potentially illegiti-
mate — access to the database from getting the credentials of
other users. This second point is crucial, as credential stuffing
attacks — where an adversary steals a list of login/password
pairs on an unsecured website and tests them systematically
on other websites — are increasingly frequent, with up to 91%
of login attempts coming from credential stuffing, of which on
average 0.50% are successful [30].

A. Preventing access

As we tolerate certain typos, we have an inevitable increase
in the probability of a successful login attempt by an adversary.
Which typos are allowed is then a crucial decision. For
example, allowing single deletions might seem like a good
idea: it corresponds to many typos, and only reduces the
entropy by a limited amount (around 5 bits on average).
However, this would be extremely detrimental in one important

2The information lower bound is 373 bits, but low-efficiency implementa-
tions that require a new random integer at each call would require up to 6400
random bits.

case: partial password re-use. As users become aware of
credential stuffing, some make small variations to prevent
such automated attacks [31], [32]. Accepting deletions makes
such attacks much more likely to succeed, which is why a
substitution — being very similar to a deletion in terms of
security — should only be accepted if the substituted letter is
a neighbour of the original. As long as the adversary follows
the protocol, the security loss entirely comes from the fact
that more passwords are allowed. With a generally lax typo-
tolerance system this means that the set of acceptable strings
goes from 1 to around 100 for a 12-character password3. This
makes bruteforce and dictionary attacks somewhat easier, but
as countermeasures are shifting the online setting away from
those and towards more refined attacks, this should not be
a risk for users with passwords of reasonable strength. Typo
correction also makes it easier to use safer, longer passwords
— which come with a higher risk of typos.

The goal here is to prove that the security loss mostly comes
from the added typos, without creating additional security
risks. In other words, the framework should not reduce the
security much beyond accepting the allowed typos. This is
done by proving the following lemma in which smart brute-
force means that the bruteforce follows the frequent password
list by decreasing frequency.

Lemma 1. Using only the username and knowledge of the
framework, finding a correct authentication message for a
password of length ≤ 16 takes in expectation at least 1

114
times as many queries as a smart bruteforce attack against a
system without typo correction.

Remark 1. Although the bound of 1
114 seems bad, there are

two reasons that explain and compensate for this. The first is
that a query in this system corresponds to a set of queries in a
standard system, so the number of queries naturally goes down
(but the bound on the number of queries accepted by the server
before triggering an alarm should go down accordingly). The
second point is that for this bound to be reached, the bruteforce
algorithm must be able to distribute queries in an optimal way
to make full use of the complex query.

Remark 2. The lemma here could also be applied to pass-
words of length strictly greater than 16, but this is unnecessary
as these passwords are generally not vulnerable to the attacks
considered.

1) Intuition: There are two ways an adversary could obtain
access if they have no prior information besides the username.
The first is to take a set of passwords and send each through the
key-sending algorithm, to gain access with either the password
itself or a version with an allowed typo. The second is to fake
the algorithm’s outputs and send at least partially incorrect
messages to the server, in an attempt to attack the hash directly.

Let’s suppose that an adversary decides to send partially
inauthentic login queries. Each query is composed of a main

3This discounts insertions as the benefit from testing longer passwords is
anecdotal.



hash, and a set of (hash, number lists) pairs. All the hashes
are salted, and the hash space — using for example SHA3-
256 — is much greater than the usual password space. This
means that sending a random string instead of a real hash can
be made to have a lower probability of success (per time unit)
than computing a real password hash. For example, assuming a
very generous bound of 160-bit passwords (uniformly random
password on 20 ASCII characters), it would still take at
least 1026 login queries before having a reasonable chance of
getting a correct hash, evidently costing more than computing
one of the correct hashes4. Taking a more realistic bound on
passwords would only decrease the success probability. As
the limiting factor lies in the number of queries, an adversary
trying to maximise their chance of success would accurately
compute all the hashes in the query.

Because sending random hashes is not efficient, an adver-
sary could instead send the same hash in multiple positions,
with different additional letters each time. This way, they
could cover all possibilities for a single missing letter in only
two or three login queries. The checking system couldn’t
easily prevent this, as common hashes would be possible (for
example, the password ”encoded” has two identical hashes
at the end corresponding to removing either ”de” or ”ed”).
Moreover, n − 1 correct hashes could be computed and then
checked in parallel through interweaving.

This effectively increases the efficiency of an adversary by
testing multiple passwords per login query. The main deterrent
against such attacks is a limit on the number of queries ac-
cepted by the service provider (or rate limiting). As the method
proposed greatly increases the probability of a user logging in
successfully when they make a typo, the maximum number of
queries allowed can be reduced accordingly without lowering
the usability. Additionally, one could make a counter for a
given hash to prevent bruteforcing them: if the server receives
a correct partial hash with a wrong additional character, they
could temporarily reject all typoed submissions from the user.
Essentially, this would be equivalent to typo correction on the
first try, and normal password checking on all subsequent tries.

Proof of Lemma 1. Any authentication message that doesn’t
follow the correct structure can be discarded. A message is
deemed correct if at least one of the hashes is correct, and
the corresponding numbers are also correct. A message must
either contain a correct hash/number pair, or a correct number
and a hash collision. As the hash space is much greater than
the space of 16-character passwords, using random hashes to
find collisions has a probability of success so low (< 2−128)
that it is irrelevant. As the checking algorithm prevents timing
attacks, finding the hash by itself is not possible. The adversary
must then have at least one (hash, number list) pair correct.
Every query they make has 18 possibilities of getting an
acceptance: one for the first two hashes, and one for each
of the 16 (hash, number list) pairs. Each query has 7 chances,
hence an upper bound of at most 114 acceptance chances.

4This assumes that the adversary knows the salt, which is reasonable as it
could, for example, be computed from the login.

B. Obtaining credentials from the database

The second attack can be performed by an adversary with
access to the database and focuses on obtaining correct pairs
of password and email/login credentials for use against other
targets. The goal is then to prove the following lemma:

Lemma 2. Let’s consider an adversary with access to the
usernames, corresponding (password hash, number) lists and
transcripts of successful login interactions. Using generic
attacks, they require at least 1

16 as much computing power
to get a password of length < 16 from a single user as if the
database only stored simple hashes of the passwords without
typo-correction.

Remark 3. Once again, the bound of 1
16 corresponds to

a worst case analysis. Empirical data shows that the real
speedup is close to 1.5.

1) Securing structural information: The first step to prevent
credential theft is to make sure that the database itself doesn’t
give structural information on the passwords through the way it
stores them. For example, storing hash lists of varying lengths
would reveal the length of the stored passwords, indicating to
adversaries the ones that would be easiest to crack.

For the users with passwords of length < 10, exactly two
hashes are stored, and the adversary gains at most a factor
2 in the bruteforcing (less in practice due to non-uniform
distribution). Let’s now consider users with passwords of
lengths ≥ 10.

Deterministically adding extra characters to the end of the
password to reach a common length prevents attacks that
seek to find the easiest passwords to crack. However, we
should avoid compromising users with already long passwords
by imposing length upper limits. Adding characters only if
the passwords are of length less than 16 seems a good
compromise, with only a few passwords standing out from
the database as being extra-hard. Despite the uniformity of the
database, a successful attack could still happen if an adversary
also has access to the messages received by the database. In
messages received, the length of the allowed key list — the
list of numbers — is also important as it can give a lot of
information on the position of the keys on the keyboard. To
avoid this, the framework reserves few numbers on the client-
side reserved for non-existent keys and fills up the neighbour
list with those to prevent this information leak.

2) Cracking the hashes: We are left with the problem of
computing passwords from a set of list of hashes and numbers,
with each list having a single salt. The adversary has three
avenues of attack. The first is by bruteforce: enumerate all
the possible passwords and check when they are correct by
comparing with the recorded hashes. To prevent this attack,
key stretching is central but must be used wisely, to make the
computation of each hash expensive and prevent the adversary
from bruteforcing billions of passwords per second [33].
The second attack uses hashes directly and computes their
preimages. The third attack uses the recorded numbers to get
information on specific letters of the password and simplify



the rest of the work. We will start by the second and third
attacks.

With the second attack, considering each list independently,
finding the preimage of a single hash is enough for the
attacker, as the number of possibilities left for the missing
letter becomes trivial. We are then looking at multi-target
preimage attacks with a promise on the structure of the targets
(that their preimages are close together5). As stated in [34],
however, the resistance of even SHA3-256 against generic
attacks is much stronger than the security requirements for
passwords. This means that the main weakness doesn’t come
from finding the preimage of the password hashes.

When it comes to the third avenue of attack, collisions are
frequent, as opposed to hashes, as the image space of each
permutation is small. If computing the permutations were more
efficient than computing the hashes, it would be possible for
the adversary to eliminate lots of potential passwords quickly.
Two methods can be used to prevent this. The first is to run
the key stretching method on each random bit computation.
The second goes by using the same key stretcher for both
the PRNG and the hashing. This can be done by first using
the key stretcher on PBi, hashing the output with different
salts to get the random permutations and finally the hash
itself. This could slightly affect preimage resistance but makes
bruteforce attacks to find the permuted characters at most
as efficient as the bruteforce attacks against the hash itself.
Indeed, if an adversary wants to eliminate possibilities for the
k-th character, they must compute the permuted character for
each password, and then eliminate all the impossible ones. If
they don’t run the procedure for the correct password they
can’t reliably eliminate passwords or characters, and if they
do they automatically get the correct hashes (and the answer)
at no additional cost.

3) Bruteforcing the passwords: The main attack left is
then to use bruteforce from the password side, testing every
password until the adversary finds one with the correct hash.
The traditional way to prevent this is to use key stretching
methods such as PBKDF2 [35] — or rather Argon2 [36],
which also has security guarantees against generic attacks.
This is where our frameworks have a security flaw, as we
have at least 16 different hashes instead of one to create and
send the password, but the adversary only has to find one.
Making all of them go through key stretching methods either
takes more time or lowers the number of iterations on each
of them6. Two factors mitigate this flaw: first, even running
a key stretching method for a few milliseconds is enough to
make bruteforce attacks very costly. Assuming we use Argon2
— which prevents efficient large parallelisation — for 2ms on
each hash, cracking a 48-bit password would naively take an
average of sixteen billion seconds, or 544 years, on the same

5It would be interesting to check whether this kind of promise problem
makes preimage computation any easier, but in any case, they could also be
made irrelevant by the use of different salts for each of the (n−1) password
hashes.

6Using a key stretcher on the central salts that are used afterwards by the
rest of the algorithm centralises this proof of work but does not provide any
extra security.

machine. This does not use the fact that it is enough to guess
one of the hashes containing a typo. Assuming a 5-bit loss
of entropy — which requires a well-optimised bruteforcing
algorithm — the expected time is still more than 17 years.
We simulated the use of this method on the Rockyou leaked
password data-set [37], [38], bruteforcing until we obtained
hashes for the 50% most frequent passwords of length > 10.
The speedup varied depending on which two characters were
removed, as shown in Table II, but stayed below 1.5.

Characters removed none 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9
Unique passwords (×106) 4.40 4.26 4.33 4.29 4.29 4.28 4.26 4.22 4.12 3.96
Proportion for 50% 33.1 29.9 31.4 30.6 30.7 30.4 30.0 29.0 26.7 23.0
Speedup 1 1.11 1.05 1.08 1.08 1.09 1.10 1.14 1.24 1.44

TABLE II
SPEEDUP GAINED FOR DICTIONARY ATTACKS BY REMOVING 2

CHARACTERS FROM ROCKYOU PASSWORDS OF LENGTH > 10. THE FIRST
LINE HAS THE NUMBER OF UNIQUE PASSWORDS (IN MILLIONS), AND THE

SECOND INDICATES THE PROPORTION OF PASSWORDS NEEDED TO GET
THE 50% MOST FREQUENT PASSWORDS IF WE REMOVE THE CHARACTERS

IN THE i-TH POSITION.

As we can see, even among a list notorious for containing
many bad passwords with lots of redundancy, removing two
characters only reduced the average number of hashes to
compute by about 31% when setting the character position in
advance — and dynamically removing the best 2 characters
would improve this by at most a few percentage points. Even
with efficient hardware, the attack would be prohibitively
costly. Moreover, a smart user interface could compute the key
stretching before the user submits the password, recomputing
from scratch each time a new character is typed. This can
guarantee an additional 10ms of free key stretching per hash
without the user noticing. We can now prove Lemma 2. We
only consider users with passwords at least 10-characters long,
as otherwise the proof is immediate due to the trivial typo
correction.

Proof of Lemma 2. The hashes are all computed with differ-
ent salts, so rainbow tables can’t help, and cracking a single
user’s credentials doesn’t help the attacker with the credentials
of another user. The data under each user is composed of the
same number of hashes and corresponding numbers, except for
the users with increased security, and the transcripts are also
structurally identical, so finding the users with passwords of
lower lengths is as easy as finding out that the last characters
of those passwords are made of padding. Knowing that they
are made of padding requires knowing that they are the image
of a non-existent character, which is equivalent to finding that
they are the image of a given character.

However, finding whether the number stored corresponds to
a given character through bruteforce is not easier than finding
the password itself, as a large set of passwords with different
characters in its stead will yield the correct number. If the
actual password wasn’t in the set tested, the adversary can’t
guess the extracted character with probability much bigger
than uniform, whereas if the correct password was in the set
the adversary already knows a correct hash.



As the preimages under the hashing functions considered are
much harder to compute than bruteforcing from the password
side, and as the additional numbers give no information unless
the adversary knows the rest of the password, the only viable
generic attack goes through bruteforcing from the password
side.

An adversary can then consider one position, ignore the two
letters concerned, and bruteforce all the others. In a best case
scenario, this method could remove close to 14 bits of entropy,
or improve by a factor 15000 the speed of the bruteforce.
However, using NIST estimates [39], at best 4 bits of entropy
would be lost, corresponding to a factor 16 speedup — much
higher than the 45% speedup observed on the data.

V. CONCLUSION AND DISCUSSION

The main contribution of this paper is a typo-correction
system with the following properties:
• It corrects 57.7% of all typos, or 91.2% of acceptable

typos.
• It stores 32 hashes and 90 integers on the server. Using

lazy evaluation — only checking the remaining hashes
when the main one is incorrect — this does not require
any extra computation on the server’s side.

• It requires no additional waiting time for computation
on the user side, as it can run between the moment the
user presses the last key and the moment they submit the
password.

• It creates little extra communication cost as the additional
data can still fit in an average packet (420 bytes for the
numbers, 544 bytes for the hashes), well below the IPv6
MTU [40].

• Assuming optimised code that runs on specialised hard-
ware 15× faster than an average client’s browser’s hash-
ing ability, bruteforcing a single password from the
database still takes more than a year7.

• Faking a correct authentication message is at best 114
times more efficient than normal bruteforce, but this
can be compensated or eliminated by having stricter
constraints on the number and frequency of queries while
still having a positive impact on usability.

When compared to TypTop, the best typo-correction system
today8, it has greater usability — correcting about twice as
many typos — and lowered computing requirements. There
is, however, a cost, in that our security guarantees are slightly
weaker (but not directly comparable as the models are differ-
ent).

Multiple practical improvements could still be added to the
system considered. For example, as the system can detect
typos, it might be interesting to let the user know when they’ve
made one (although this might lower usability). Looking in

7This assumes that the client interface runs fast hashing algorithms, for
example, in a WebAssembly environment, which can have a 20× speedup
over asm.js [41], [42].

8This title of best is easily attributed as the only competitors — to our
knowledge — are previous systems by the same authors.

another direction, it would be possible to associate given (hash
/ number) pairs with frequencies and allow typos probabilisti-
cally, with the system being more forgiving when the typo is
repeated.

Combining both approaches, if a typo happens with great
frequency, it would be possible for the system to ask if the
user wants to make that their new password. It would also
be possible to use some secret sharing system to combine
the different hashes and simplify the computations, but this
seems to require a challenge system with at least two rounds
of communication.

Naturally the schemes proposed depend on the service
providers’ will to implement them. Thankfully, we can easily
address this. Switching from a system where passwords are
simply hashed requires two things to be changed: the database
must be transformed, and the client’s code must also be made
to compute the new kinds of hashes. The first part is relatively
simple and can be done by adding an extra column that points
to the new complete hashing information and is accessed only
when the main hash is not correct. Each time a user correctly
logs in, the database uses the occasion to add the relevant
data (which is sure to be correct as the main hash matches).
This allows the service provider to maintain compatibility
with a legacy system and lazily upgrade the security of all
users. In the context of long-term maintainability, we focused
on Argon2 SHA-3 as primitive functions. That said, other
cryptographic hash functions and PRNGs could be used if
vulnerabilities were found in the ones mentioned. The main
constraint is that the PRNG should be secure on correlated and
non-uniform inputs. The parameters on Argon2 also require
fine-tuning depending on the assumed client hardware and
the estimated abilities of adversaries, as they create a direct
trade-off between usability (in login delay) and resistance to
credential theft attacks.

The client’s code must also be transformed so that it trans-
fers not just the main hash but all the necessary information.
This can be done without requiring redeployment or updating
clients when considering web services. Indeed, the service
provider is also the one providing the Javascript code for
the web page, and can update this centrally without directly
implicating the users.

An important change is that hashes are computed on the
client’s side, but there are nowadays next to no reason to
compute them on the server’s side — unlike two decades ago
when they could be necessary to assure compatibility with
legacy systems.
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